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Abstract: Steganalysis of least significant bit (LSB) embedded images in spatial domain has been investigated extensively over
the past decade and most well-known LSB steganography methods have been shown to be detectable. However, according to the
latest findings in the area, two major issues of very low-rate (VLR) embedding and content-adaptive steganography have
remained hard to resolve. The problem of VLR embedding is indeed a generic problem to any steganalyser, while the issue
of adaptive embedding specifically depends on the hiding algorithm employed. The latter challenge has recently been brought
up again to the area of LSB steganalysis by highly undetectable stego image steganography that offers a content-adaptive
embedding scheme for grey-scale images. The authors new image steganalysis method suggests analysis of the relative norm
of the image Clouds manipulated in an LSB embedding system. The method is a self-dependent image analysis and is
capable of operating on low-resolution images. The proposed algorithm is applied to the image in spatial domain through
image Clouding, relative auto-decorrelation features extraction and quadratic rate estimation, as the main steps of the
proposed analysis procedure. The authors then introduce and use new statistical features, Clouds-Min-Sum and Local-
Entropies-Sum, which improve both the detection accuracy and the embedding rate estimation. They analytically verify the
functionality of the scheme. Their simulation results show that the proposed approach outperforms some well known,
powerful LSB steganalysis schemes, in terms of true and false detection rates and mean squared error.
1 Introduction

Least significant bit (LSB) image steganography techniques
include methods that insert secret message bits into the LSB
plane of a cover image. Steganalysis techniques try to
detect the presence of the secret message embedded in a
suspicious image. A steganalyser (SA) is algorithm-specific,
if designed to detect specific steganographic algorithms or
targeted, where it is known as blind or universal, when it is
effectively applicable to any, or a large variety, of
steganography techniques. Although ‘raw quick pair’ [1],
‘weighted stego (WS)’ [2], ‘revisited-WS’ [3] and ‘regular
and singular groups (RS)’ [4, 5] methods were introduced
for LSB steganalysis, also Jsteg analysed by a quantitative
structural steganalysis method [6]. Dumitrescu et al. [7]
introduced other technique in LSB steganalysis persuaded
by ‘closure of sets’ [8]. In addition, ‘sample pair analysis’
(SPA) [9, 10] and its enhanced version, least square method
(LSM) [11], are famous in the literature.
Luo et al. [12] suggest a generalised LSB matching image

steganography method, as well as an edge adaptive model
choosing the embedding regions related to the size of the
hidden message and the difference between sequential
pixels. Steganalysis technique presented in [13] employs
singular value decomposition [14] to detect alterations
made by the steganography within overlapped windows.
Histogram characteristic function (HCF)-based method is
proposed by Harmsen and Pearlman [15] to discover hidden
message as additive noise inside colour pictures, in which
the stego histogram in frequency domain is modelled by
multiplication of the HCF and noise characteristic function.
The LSB matching [16] is a more sophisticated LSB
embedding method than the LSB replacement (LSBR),
which could stay undetectable against some LSBR SAs. In
addition, the LSB matching steganalysis [17, 18], 2-LSB
steganalysis [19] and LSM [20] to estimate the length
of payload of the LSBR in digital images were introduced
by Ker. He also derived the estimator distribution over
different covers. Wavelet absolute moment (WAM)
steganalysis [21] exploits higher-order wavelet moments of
noise component of an image to classify stego images
blindly. It is shown that WAM feature sensitivity
significantly improves detection accuracy.
SPAM features [22] using transition probability matrices of

Markov chains are well known for detection of spatial domain
steganography. Multi-dimensional correlation steganalysis
[23] tries to aggregate the pixels correlation in spatial
domain and finds the distortion of the image impose by LSB
alternation. Gul and Kurugollu [24] present a method to
steganalyse highly undetectable stego (HUGO) that extracts
features from the downsampled 5-variate PDF of the image,
and then uses an optimised support vector machine (SVM)
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to do an efficient detection up to 85% on BOSSRank database.
Fridrich et al. [25] introduce a high-dimensional feature set to
detect HUGO embedded images. QSRM [26] as a subtle
attack on HUGO extends the quantitative steganalysis to rich
models and uses a high-dimensional feature set and tries to
minimise the training error.
In this paper, we propose a new method for steganalysis of

the LSB embedding in images, focusing on the case of very
low-rate embedding that is hardly detectable reliably by the
current LSB steganalysis methods. Our steganalysis
technique is based on the new ‘relative auto-decorrelation
(RAD)’ between the ‘Clouds’ of the suspicious image. This
new technique processes the common parts of an image
through a new smart partitioning procedure called
‘Clouding’, derives the two-dimensional (2D) decorrelation
of the Clouds of the received image, forms a characteristic
curve to decide on the presence of the message using a new
‘quadratic estimator’, and eventually gives an estimate of the
embedding rate. In addition to Clouding, RAD and quadratic
estimator we use features like ‘Local-Entropies-Sum’ (LES)
and ‘Clouds-Min-Sum (CMS)’ to obtain high detection
accuracy faster than usual. In Lemmas 1 and 2, it has been
shown how to reduce the complexity of the RAD as
Corollary 1, and in other Lemmas 3 and 4 it has been tried
to verify the functionality of the features and the quadratic
characteristic of the rate estimator statistically. In addition,
simulation results verify the accuracy of the scheme
compared with some well-known SAs in spatial domain.
This paper continues in Section 2 with a description of the

proposed RAD steganalysis (RADS), which details the
analysis process including image Clouding,
cross-decorrelation (CD), features selection and rate
estimation. Simulation results are presented in Section 3
and a conclusion is given in Section 4.
Fig. 1 Flowchart of the proposed steganalysis algorithm
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2 Relative auto-decorrelation steganalysis

Image Clouding, 2D RAD of the Clouds, feature extraction of
decorrelation and rate estimation are different stages of our
‘RADS’ algorithm that are described in this section. RAD,
‘relative auto-correlation’, LES and CMS features are
extracted and used to improve the detection accuracy.
Fig. 1 illustrates the flowchart of the RADS method, in
which the rate estimation is adjusted by some thresholds
derived from RAC, LES, CMS and learning process for
making the best decision. We start from mathematically
defining received image (cover or stego) as the input to
next Clouding stage.

Definition 1 (cover and stego): Cover matrix (Cm × n),
message vector (M1 × k), pseudo-random number generator
(PRNG) and stego matrix (Sm × n) are interrelated as follows

Sm×n = LSB EmbeddingPRNG(Cm×n, M1×k) (1)

The suspicious or received image (Sm × n) may be cover image
(whenM1xk = 0) or stego image (whenM1xk = 0). Now first
stage of RADS, Clouding, can be applied to Sm × n.
2.1 Clouding

Clouding splits the received image into luminance-aware
slices called Clouds. Each Cloud is a set of nearly the same
luminance pixels in an almost edge-free region of the image
where the values of other pixels with highly different
luminance in that Cloud are set to zero. The Clouding
method is based on the similarity among pixels of the
image in some x-most significant bits (x-MSBs).
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 31–42
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Fig. 2 Original 512 × 512 Lena’s picture has been 2-MSBs
Clouded and four different Clouds have been exploited
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Consequently, Clouding of a nature image, for instance,
chooses clouds, sky, river, trees or a subject whose x-MSBs
are almost alike. Given by x-MSBs Clouding, pixels of an
image are partitioned such that x-MSBs of the pixels values
in each 2x different Clouds are the same, but the other
pixels values are set to zero. Fig. 2 shows different Clouds
of Lena’s picture after 2-MSBs Clouding. Lena’s 2-MSBs
Clouded image has four different Clouds with respect to
2-MSBs values.
If we consider 2x Cloud types given by x-MSBs, we have

28–x different combinations of the rest of the bits (as
y-LSBs where y = 8–x) which we called ‘Rain Types’. If
there are 25 Cloud types of different pixel values, there may
be 23 values for each Cloud type, as there could be a little
difference between parts in almost the same grey level.
Therefore we can see a Cloud as a matrix with zero or
nearly the same entries. If we know the conventional LSB
embedding is used, it is better to set y-LSBs (y-LSBs) to
1-LSB (y = 1). LSBR uses XOR operation between pixels
values (|PVi⊕ PVj|), whereas LSB matching-like algorithm
uses absolute value of subtraction (|PVi− PVj|) between
two pixels values in CD function, but we use⊕ as the
notation for such operations in this paper. The property
between the values of the pixels (PVs) of an x-MSB, y-LSB
Cloud is

∀PVi, PVjeCloud:|PVi − PVj| , 2y; x+ y ≤ 8 (2)
CDC1,C2(i, j) W
∑(m, n)

(k, l)=(0, 0)

C1(k, l)⊕

CDC(i, j) W CDC,C(i, j) =
∑(m, n)

(k, l)=(0, 0)

C(k,

CDI(i, j) = CDI, I(i, j) W
∑2x−1

r=0

CDCr
(

=
∑2x−1

r=0

∑(m, n)
(k, l)=(0, 0)

Cr(k, l)⊕

=
∑(m, n)

(k, l)=(0, 0)

∑2x−1

r=0

Cr(k, l)⊕

=
∑(m, n)

(k, l)=(0, 0)

I(k, l)⊕ I ((k +

CDI (i, j) = CDI (−i, −j) = CDI (i− m, j) = CDI (i,
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2.2 Relative auto-decorrelation

The x-MSBs Clouded image is a set of all 2x Clouds. These
Clouds undergo the CD process in 2D to extract similarity
(RAC) and difference (RAD) features for steganalysis of the
image. Following definition tries to show the RAD of an
image step-by-step. In Lemmas 1 and 2, we reduce the
complexity of RAD and in Lemmas 3 and 4 we prove that
it works analytically to distinguish stego from cover.

Definition 2 (relative auto-decorrelation of an image): If the
suspicious image is I as Definition 1 and Crs (r = 0,…, 2x− 1)
are its Clouds after x-MSBs Clouding. 2D relative CD of two
Clouds C1 and C2 for 2D shift (i, j)∈ [−m + 1, m] × [−n + 1,
n] and⊕ operator (absolute difference or XOR) is as follows
(see (3))

The RAD of a Cloud (C ) is (see (4))

And the RAD of I is as follows (see (5))

In Lemma 1, we show that the complexity to calculate RAD
or RAC by (5) can be reduced to 1/4, because in each
dimension a half of decorrelations are the same (CDI(i, j) =
CDI(m− i, n− j)). In Lemma 2, we show that such
operations do not change the SVM detection and then the
main result is brought as Corollary 1.

Lemma 1: Assume a 2D m × n image (I) as Definition 1 and
CDI is the decorrelation function as stated in Definition 2.
Therefore we have (see (6))

The proof can be found in Appendix.
For classification of the suspicious images into cover and

stego, we use SVM [27] with polynomial kernel, which is
trained by the features extracted from our train set. Lemma
2 generally says that replicated data does not improve the
accuracy, and also transformed data like data square does
C2((k + i)mod m, (l + j)mod n) (3)

l)⊕ C((k + i)mod m, (l + j)mod n) (4)

i, j)

Cr((k + i)mod m, (l + j)mod n)

Cr((k + i)mod m, (l + j)mod n)

i)mod m, (l + j)mod n)

(5)

j − n) = CDI (i− m, j − n) = CDI (m− i, n− j) (6)
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not have more information to make the detection accuracy
better. It means that original not-repeated data are sufficient
to obtain the best result. Since Lemma 1 shows some of the
data are replicated, Corollary 1 finally shows a tighter
interval of computation to obtain the same result with lower
time complexity.

Lemma 2: Assuming f (.) is a monotonic function, then no
improvement to the discrimination accuracy of an SVM is
achieved if the SVM uses f (feature) in place of the feature
itself. The proof is given in Appendix.

Corollary 1: Owing to Lemmas 1 and 2, to calculate 2D CD
feature of an image, it is sufficient to calculate 2D CD of 2D
interval [1, m/2] × [1, n/2]. The proof can be found in
Appendix.

In the following Lemmas 3 and 4 and Corollary 2, it is tried to
model our steganalysis framework as mentioned in
Definitions 1 and 2 and then its performance is statistically
verified. In fact Lemma 3 specifically will use in Lemma 4
as CD of the steganographer’s (SG’s) PRNSeq and SA’s
PRNSeq, and Lemma 4 shows the analytical correctness of
our RAD method for a specific shift, and finally Corollary 2
is the functional verification of the main part of our SA to
use RAC and RAD features.

Lemma 3: Assume that PRNSeq1 and PRNSeq2 are two
binary pseudo-random number sequences with uniform
distribution. Therefore we have

∀(i, j)e[1, m]× [1, n]:CDPRNSeq1,PRNSeq2(i, j) ≃
m× n

2
(7)

In addition, for a PRNSeq alone, we have

∀(i, j)e[1, m]× [1, n]; (i, j) = (0, 0)

CDPRNSeq(i, j) ≃
m× n

2

(8)

The proof can be found in Appendix.
Lemma 4: Assume that cover C is a correlated image, that is,
for some small Kij we have

∀(i, j):CDC(i, j) ≾ Kij ≪ # of cover pixels (9)

If S = LSB_EmbeddingPRNG(C,M ) as C,M and S specified in
Definition 1, statistically

CDS(i, j) ≥ CDC(i, j) (10)

The proof can be found in Appendix.

Corollary 2: For a correlated cover (C ), it could be deduced
that if S = LSB_EmbeddingPRNG(C, M ), statistically

∑(m/2, n/2)

(i, j)=(0, 0)

CDS(i, j) ≥
∑(m/2, n/2)

(i, j)=(0, 0)

CDC(i, j) (11)

Proof: The above result is derived from Lemma 4 and
Corollary 1. □
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Therefore the 2D RAD of a Clouded image is statistically
altered by the LSB embedding and, hence, combined with
the innovative rate estimator can correct the biasing between
different images. Consequently statistical features with
relative 2D location-aware auto-decorrelation characteristics
can distinguish cover images from the stego ones.

2.3 Features extraction and analysis

We are interested in finding intrinsic features that improve
distinguishing the stegos from the covers in an increasing or
decreasing order, given embedding operation. The statistical
features can be derived after the 7-MSBs-Clouding that
yield a better performance compared with the others,
because most of the LSB steganography methods affect
low-order bits. The frequencies sequence of (x-MSBs,

y-LSB)-Clouded m × n image is f 00 , . . . , f 2
y−1

0 , f 01 , . . . ,
{

f 2
y−1

1 , . . . , f 02x−1, f
2y−1
2x−1

}
where f ji value is the number of

the ith Cloud type and the jth rain type pixels. Note that for
7-MSBs, 1-LSB Clouding, we always have 0≤ i < 27, 0≤ j
< 21 and, in the general case, the inequality 0 < x + y≤ 8 is
satisfied. Thus, the first statistical feature, called ‘LES’, is
derived as

LES =
∑2x−1

i=0

∑2y−1
j=0 f ji
m∗n

h
f 0i∑2y−1
j=1 f ji

, . . . ,
f 2

y−1
i∑2y−1
j=1 f ji

( )
(12)

where h(.) is the Shannon’s entropy function [28]. If
pji = f ji /

∑2y−1
k=1 f ki then

∑2y−1
j=1 pji = 1 and p j

i for every j
establish different states probabilities of a random variable,

and h
f 0i∑2y−1
j=1 f ji

, . . . ,
f 2

y−1
i∑2y−1
j=1 f ji

( )
= h p0i , . . . , p2

y−1
i

( )
=

− ∑2y−1

j=1
pji × log2 pji

( )
.

The LES intuitively shows a normalised measurement
of randomness existing in the image. As an
information-theoretic feature, entropic factor (LES)
increases by more embedding rate. Fig. 3 shows the LES
characteristic curves of some typical images from BOSS
database. Actually, in low bit rates, slope of this feature is
high enough to improve the detection accuracy.
The second statistical feature, known as CMS is defined as

CMS =
∑2x−1

i=0

min f 0i , . . . , f 2
y−1

i

( )
m∗n

(13)

CMS intuitively shows the normalised minimum distortion
among different Cloud and rain types. For x = 7 and y = 1,
these two statistical features (LES and CMS) are either
monotonically increasing and between zero and one, given
the embedding operation. Fig. 4 shows the CMS
characteristic curves of some typical images from BOSS
database. The CMS feature can be used as an intrinsic
feature for a given embedding rate and it can show the
lower bound of the detection rate, because it represents the
normalised minimum number of same Cloud-type pixels or
the minimum disturbance in the image.
The next monotonically increasing statistical feature as the

main contributing feature is RAD similar to 2D RAD
computation in Definition 2, because it counts the number
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 31–42
doi: 10.1049/iet-ipr.2013.0877



Fig. 3 LES against embedding rate of some typical LSB-matched images from BOSS database
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of decorrelations of the Clouds of the suspicious image (I) as
(see (14) at the bottom of the next page)

where Crs are the 2
7 = 128 different Clouds of the suspicious

image (I) after 7-MSBs Clouding, and the best pair for ‘depth’
respect to Corollary 1 is (m/2, n/2) where m and n are the
image (I) sizes. Furthermore, RAC feature is similar to
RAD feature that counts the number of correlations of the
Clouds of the received image. Respect to the received
image sum of RAC and RAD is constant (see (15))

Fig. 5 shows the RAC and RAD characteristic curves of two
typical images from BOSS database with respect to
embedding rates from 0 to 100%. Our results show that the
behaviours of the other images are the same.

2.4 Rate estimation

Let us take SG for the steganographer and SA for the
steganalyser. To estimate the LSB embedding rate (p), first
we need to estimate the initial point of characteristic curve
of the cover image which the suspicious image is made
from, so we need to re-embed the suspicious image at
re-embedding rates (q) from 0 to 1 to find this curve. The
initial point of RAC characteristic curve of the cover image
for SG before embedding is

RACSG(0)WRAC(SSG = LSB Embedding0%, PRNGSG
(C, M))

(16)
RAD(I ) W
∑depth

(i, j)=(0, 0)

∑127
r=0

∑(m, n)
(k, l)=(0, 0)

Cr(k, l)⊕

RAC(I ) W
∑depth

(i, j)=(0, 0)

∑127
r=0

∑(m/2, n/2)

(k, l)=(0, 0)

(1− Cr(k,

RACSA(1) W RAC(SSA = LSB Em
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The final points of the characteristic curve of the image for SG
in cover and SA in stego after full embedding will be

RACSG(1)WRAC SSG=LSBEmbedding100%,PRNGSG
(C,M)

( )
(17)

(see (18))

where PRNGSG and PRNGSA are, respectively, the PRNG
generated by SG and SA. Note that these two final points
are nearly equal (i.e. RACSG(1) 	 RACSA(1)), but the
initial points are not equal necessarily (i.e. RACSG(0)≠
RACSA(0) = RACSG(p)); where the embedding rate of SG
(0≤ p≤ 1) is unknown for SA.
The most interesting property of characteristic curves of

RAD and RAC, inferred empirically, is that they are
quadratic curves. Quadratic property of RAD and RAC
features has been tested and verified empirically for many
of images in the simulation section and it can be derived by
using Lemma 4 proof and (30) that CDSS has a quadratic
property respect to p. In fact we have

CDS,S(i, j) = Kij + m× n× 1− 1− p

2

( )
1− p

2

( )[ ]
= Kij + m× n× p× 1− p

4

( ) (19)

where 0≤ p≤ 1 and Kij in Lemma 4 is less than the number of
Cr((k + i) mod m, (l + j) mod n) (14)

l))⊕ Cr((k + i) mod m, (l + j) mod n) (15)

bedding100%,PRNGSA
(SSG, M)) (18)
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Fig. 5 RAC (falling) and RAD (rising) characteristic curves of some typical LSB-matched images from BOSS database

Fig. 4 CMS against embedding rate of some typical LSB-matched images from BOSS database
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image pixels. Owing to (15), RAC is the sum of different
CDSS with different (i, j), so RAC has still quadratic
property with order of p2.
By removing 8th bit plane and placing 7th bit plane in LSB

plane instead this approach can be generalised to 7th bit plane
and so on. Thus, RAC characteristic curve of ith bit plane
could be estimated by removing 8th, 7th, …, and (i− 1)th
bit planes as follows

yi = ai × (xi − 1)2 + bi (20)

where xi is the re-embedding rate (from 0 to 1), yi is
RACSG(p = xi) or RACSA(q = xi) feature, ai (quadratic
coefficient) and bi (constant term) are unknown parameters.
If we estimate the initial point y|x = 0 = RACSG(0), then we

can derive a and b by knowing RACSA(1) = y|x = 1 = b, as the
RACSA(q; 0 ≤ q ≤ 1) 	 1

N

∑N
n=1

RACSA SSG

(

36
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minimum of the quadratic equation of y = a(x− 1)2 + b,
because there are only two unknown parameters that can be
determined by two independent equations.
Since PRNGSA is randomly generated, the different points

of the characteristic curve can be known by taking average on
some different PRNGs (PRNGn

SA; n = 1, …, N ) respect to the
re-embedding rate (q), as follows (see (21))

A practical method to obtain initial point is to derive RAC
feature of other higher bit planes excluding the 8th bit
plane, because higher bit planes are more independent of
SG’s noise and more similar to the pure 8th bit plane of the
unaltered image. To obtain RAC feature of the ith bit plane,
we have to ignore jth bit plane (for j > i) in our Clouding
and correlation stages. For example, 7th bit plane curve in
Fig. 6 is calculated for the same image without 8th bit
= LSB Embeddingq,PRNGn
SA
(SSG, M)

)
(21)

IET Image Process., 2015, Vol. 9, Iss. 1, pp. 31–42
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Fig. 6 RAC features of 8th(a), 7th(b) and 6th(c) bit plane of Lena’s LSB-matched image

Table 1 Detection accuracy of RADS to steganalyse of 2.5%
LSBR for different depth sizes

Depth size 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 64 × 64

detection
accuracy, %

59.2 67.6 74.4 79.6 83.3 85.5 86.1

www.ietdl.org
plane, and 6th bit plane curve is computed from the same one
without 7th and 8th bit planes. We ignore 8th bit plane to
obtain 7th bit plane curve, no matter whether the 8th bit
plane has been already embedded.
We guess that similarity ratio of the 8th bit plane RAC

feature to the 7th bit plane RAC feature resembles the
similarity ratio of the 7th bit plane RAC feature to the 6th
bit plane RAC feature. Regarding (20), RAC features and
parameters of the 7th and the 6th bit planes (a6 and a7) are
known, so we can derive the unknown quadratic coefficient
a8 = a27/a6 of the 8th bit plane by similarity of growing
rates a8/a7 = a7/a6 and the quadratic equations of

y8 = a8∗(x8 − 1)2 + b8, y7 = a7∗(x7 − 1)2 + b7, and

y6 = a6∗(x6 − 1)2 + b6
(22)

That leads to an estimate of the initial point investigated.
Since we always obtain a positive rate (even very small),
we need to use some thresholds to hide the rate estimation
error. These thresholds can be obtained from the learning
process and helping of the other LES and CMS features.
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 31–42
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Fig. 6 shows RAC features of 6th, 7th and 8th bit plane of
Lena’s LSB-matched image.
As shown in Figs. 6a–c, when more pseudo-random bits

are inserted into an image (I), the RAC feature of the image
(I) decreases quadratically. To estimate the embedding rate,
we also extracted the statistical features of other bit planes.
Note that the 6th and the 7th bit planes of the image (I) are
almost statistically constant, even after the embedding
operation. By comparing Figs. 6a–c, we can determine the
quadratic coefficient of the RAC curve of the cover 8th bit
plane (LSB), and then the constant or free term of the RAC
curve of the LSB plane of the image (I) can be derived.
This is because the full embedding rate point is a local
minimum point that can always be attained. Therefore by
comparing this derived analytical free term with the
constant term of the suspicious image, an estimation of the
37
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Table 2 Average on mean square error of rate estimation for RADS compared with other SAs

Steganography Steganalysis

Proposed RADS QSRM [26] RWS [3] SPAM [22]

LSBR 8.7 × 10−4 1.01 × 10−3 1.15 × 10−3 1.48 × 10−2

HUGO 2.51 × 10−2 1.49 × 10−2 3.67 × 10−2 4.84 × 10−2

Table 3 Detection accuracy of RADS against others to
steganalyse LSBR with 2.5% embedding rate

www.ietdl.org
embedding rate can be achieved, and the difference shows the
estimated rate of embedding (p̂).
Steganalysis
method

Proposed
RADS

RWS
[3]

WS
[2]

SPA
[11]

RS
[5]

LSBR,% 85.5 77.3 60.6 56 54
2.5 Notes on computational complexity

The bottleneck of the RADS is when it runs the 2D
cross-correlation part. In our simulation, we run a profiler to
find the most time-consuming part of the method. If the
RADS is executed with l as Cloud size (normally 512 ×
512, the same as the image size), s as number of samples
(usually 100 samples, i.e. one sample per rate from 0 to
100), d as depth of correlation (normally 0.001l≅ 16 × 16
i.e. correlation interval from (1,1) to (16,16)) for an m ×
n-pixel c-bit (usually true-bit or 24 bit) red–green–blue
(RGB) image, the complexity of the algorithm (O(N )),
based on the definitions, is linear with respect to all system
parameters, as

Feature extraction complexity = m× n/l × d × s× l × c

= m× n× d × s× c

(23)

The quadratic time-complexity of SVM classifier [29] in our
work is not high because the feature set and dimension are
small. When the number of features is higher than 300, it is
better to use ensemble classifier to obtain the result in a
reasonable time [30] for faster performance but with lower
accuracy. Table 1 shows the relation between detection
accuracy and depth size of the RADS to steganalyse LSBR
with 2.5% embedding rate. By this observation, we found
that 32 × 32 depth size was enough to obtain reasonable
results, where 64 × 64 depth size was of 4x complexity.
Fig. 7 ROC curves of the proposed RADS, as compared with those
of some other methods for 2.5% embedding rate of LSBR
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3 Experimental results

BOSS [31, 32], COREL [33] and NRCS [34] standard
databases of images were used to execute our simulations
on a Pentium-IV Quad-Core 2.8 GHz personal computer.
The RADS codes have been written in MATLAB editor
and more than 10 000 images were processed. We
demonstrate here the results using the RADS algorithm
with RAD, RAC, LES and CMS features. The best
configuration was found with the size of the Cloud to be
the same as the image size, RAD depth size of 32 × 32, and
the embedding rates of 2.5% for 8 bit grey-scale images of
size 512 × 512. The features shaped the feature vector of an
SVM classifier with multi-order polynomial kernel with 10
000 iterations of quadratic programming for convergence,
where a half of images of the databases (about 5000) were
Table 4 Detection accuracy of RADS against others to
steganalyse LSBM with 2.5% embedding rate

Steganalysis
method →

Proposed
RADS

QSRM
[26]

SPAM
[22]

WAM
[21]

LSBM,% 89 90.9 87.6 77.4

Fig. 8 ROC curves of the proposed RADS, as compared with those
of some other methods for 2.5% embedding rate of LSB matching
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Table 5 Detection scores of BOSS competitors and RADS for 0.4 bpp-embedding with HUGO

Steganalysis methods Proposed RADS SPAM [22] Westfeld [31, 32] Guel and Kurugollu [24] HUGO Breakers [25]

detection accuracy, % 78 65 67 76.8 80.3
false positive, % 15 not specified not specified 19 18
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used to train the SVM. The others (called test set), including
both the cover and stego images uniformly, with embedding
rates equal to 2.5% were used for the steganalysis test.
Based on the results of the simulation, RADS algorithm
outperformed the methods reported in [2, 3, 5, 11, 21, 22]
in the sense of the detection accuracy. The reference
methods in our comparisons, [2, 3, 5, 11, 21, 22], have
been selected due to the facts that they are specifically
based on analytical approaches, are applicable to almost any
type of images, and have been found to be the bases of
several other steganalysis methods introduced later.
3.1 Rate estimation error

RADS algorithm as a rate estimator has some error to estimate
the accurate embedding rate, and SVM with the image
features help it to do a good detection. Table 2 shows
average of mean square error of rate estimation using the
proposed RADS and baseline SAs for LSBR and HUGO
with uniformly distributed embedding rate over the range of
[0,1] bpp. As discussed in the next section, these features
are analysed by a trained SVM to distinguish cover images
from their altered versions.
3.2 Detection accuracy comparisons

After rate estimation, RADS tries to distinguish cover images
from stegos using SVM, rate estimation and the features of
the received images. Fig. 7 depicts receiver operating
characteristic (ROC) curves of the RS [5], SPA [11], WS
[2] and revisited-WS [3] compared with RADS for 2.5%
embedding rate of LSBR algorithm. We compare RADS
with WS and revisited-WS as the famous WS-like methods
[2, 3, 35]. As shown, RADS algorithm achieves a better
detection performance, as compared with RS, SPA and
other WS-like methods. Table 3 shows the detection
accuracies achieved using the proposed and baseline SAs
against the LSBR steganography with the embedding rate
of 2.5%.
We also applied our method to other LSB steganography

methods such as LSB matching [16] and LSB + [36]. The
observations were almost the same by a little degradation in
performance, because RADS depends on the statistical
features of the LSBs, like that in RAC and RAD. The LSB
matching detections are found to be a bit less accurate, but
the LSB + method is detected even faster than the others,
because it embeds higher bits to resist conventional
steganalysis methods. Fig. 8 illustrates the ROC curve of
the RADS against QSRM [26], WAM [21] and
second-order SPAM [22] SAs for 2.5% embedding rate of
the LSB matching. Table 4 shows the results of comparison
between the mentioned SAs for LSBM steganography with
embedding rate of 2.5%.
Finally, we evaluated our proposed algorithm by making

comparisons with some well-known steganalysis methods
that participated in recent BOSS competition [31, 32]. We
trained RADS by BOSSBase database and tested with
IET Image Process., 2015, Vol. 9, Iss. 1, pp. 31–42
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BOSSRank database that contains images taken by Leica
M9 camera [32]. BOSSRank is 0.4 bpp-embedded by
well-known algorithm HUGO [37] through Bernoulli
process with p = 0.5. Table 5 shows the results using RADS
algorithm and the other competitors in [32] for a half subset
of the BOSSRank. RADS could outperform some
submissions of such new methods; however, slightly higher
detection accuracy has been achieved by Fridrich et al. [25]
because it was adapted to HUGO.
4 Conclusion

The new Cloud-based 2D CD steganalysis, called RADS, has
been proposed in this paper. The different stages of RADS
algorithm, including image Clouding, relative 2D CD,
feature extraction and rate estimation have been investigated
in detail. The multi-stage RADS algorithm also comes with
other suitable features like LES and CMS for improving
steganalysis results. The RADS complexity is adjustable
based on a tradeoff between processing time and
steganalysis accuracy. The performance of the RADS is
comparable with those of superior LSB steganalysis
methods introduced earlier. RADS can also estimate the
LSB embedding rate with no prior knowledge of the image
characteristics. Simulation results have shown that the
RADS outperforms well-known methods for steganalysis of
the LSB steganography, particularly at low embedding rates.
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6 Appendix

6.1 Proof of Lemma 1

The mentioned property is indefeasible when we check all
possible intersections of an image with itself. Equation (3)
provides our necessary deductions for the next parts. From
(3) we have (see (24))

If C1 = C2 = I, from (3) to (5) we have CDI(− i, − j) =
CDC2, C1

(− i, − j) = CDC1,C2
(i, j) = CDI(i, j). If C1 =C2

= I, it can be inferred that CDC1, C2
(i, j) = CDC1,C2

(− i, − j). From (4) we have (see (25))

Similarly CDC(i, j) = CDI(i−m, j) = CDI(i, j− n) = CDI(i−
m, j− n). As CDI(i, j) = CDI(− i, − j), it could be achieved
that CDI(i−m, j− n) = CDI(m− i, n− j).

6.2 Proof of Lemma 2

Training an SVM with feature vectors of images in the
training set is to decide on the class (cover or stego) to
which a given image may belong. An over-learnt SVM may
perform worst than a normal SVM to classify images. In
this lemma, we do not consider the effect of learning on the
classifier performance; we rather do consider the effect of
the feature vector in a pre-processing stage on the training
efficiency. Assume that S is the set of training features of
i)mod m, (l − j)mod n)

(l − j)mod n)⊕ C2(k, l) = CDC1,C2(i, j) (24)

+ i− m)mod m, (l + j − n)mod n)

+ i)mod m, (l + j)mod n) = CDC(i, j) (25)
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known images, as

S = (vi, bi)| i = 1, . . . , n, vieR
dim,

bi [ {−1(stego), +1(cover)}

{ }
(26)

where the bi shows the class of vi and dim is the dimension of
each vector. Learning procedure finds the most marginal
hyperplane (Mvi +C = 0 for i = 1, …, n) that divides the data
into two classes of cover and stego images. The hyperplane
parameters M, C can be found by Lagrange multipliers (γ)
of quadratic programming optimisation problem, as

minM ,C maxg 0.5||M ||2−
∑n
i=1

{gi× ((Mvi+C)× bi− 1)}

[ ]

(27)

where M = ∑n
i=1 gi × bi × vi, C = expectation{bi −Mvi}.

By applying any incremental/decremental (monotonic)
function to the data, the n-tuple threshold as a distinguisher
is not changed, because the order of the data with respect to
their magnitude remains unchanged. Only some of γi are
positive and corresponding vectors (vi) are on a hyperplane.
Applying monotonic function ( f ) to the data ( f (vi))
maintains the order of the most of positive γis, while some
multipliers may be removed from the learning process.
Besides, the linear functions, f, do not change either the
orders or the optimal solution (see below).
If the multipliers set order remains constant, applying f

function causes changing the values of Lagrange multipliers
edited by gnewi = gi × vi/f (vi), otherwise the solution of the
quadratic programming problem deviates from optimal
value and some information may be lost. In fact, strict
convexity of pre-processed features removes some
positive-multiplier features from the SVM learning phase.
From information-theoretic aspects, the pre-processing stage
does not change the entropy of the system.

6.3 Proof of Corollary 1

It can be easily conceived that CDI(i, j) = CDI(m− i, n− j);
(i, j)ε[1, m] × [1, n] from Lemma 1, so we have

CDI(1, 1) = CDI(m− 1, n− 1), CDI(1, 2)

= CDI(m− 1, n− 2), . . . , CDI
m

2
,
n

2
− 1

( )
= CDI

m

2
,
n

2
+ 1

( )
E{PRNSeq1(i), PRNSeq2(j)} W
∑(1,1)

(k,l)=(1,1)

(2× PRNSeq1

E{PRNSeq1(i), PRNSeq2(j)} =
∑

(k,l);PRNSeq1(k,l)=PRNSeq2(k+i,l+j)

(2

+
∑

(k,l);PRNSeq1(k,l)=PRNSeq2(k+i,l+j

=
∑

(k,l);PRNSeq1(k,l)=PRNSeq2(k+i,l+j)

(+
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Thus, half of the CDs are the same; and, from Lemma 2, no
additional processing on previous data is required.
Consequently, the minimum 2D interval to obtain CDs is
[1, m/2] × [1, n/2].
6.4 Proof of Lemma 3

It is known that statistically cross correlation (E{.}) of two
pseudo-random number sequences are zero when the
symbols are −1 or +1. We map symbol 1 to + 1 and
symbol 0 to −1 by linear one-to-one transform of l(x) = 2*x
− 1 with simple multiply operator × , where ( + 1) × (−1) =
(−1). We have (see (28))

We can rewrite the above equation as (see equation at the
bottom of the page)

Thus, cross-correlation of the two pseudo-random number
sequences is almost zero, because the number of equal
positions is almost the same as the number of unequal
positions. To estimate CD of two binary uniform PRNSs,
we can repeat decorrelation intervals and average on
pseudo-random number sequences for some big R nearly
equivalent to de-correlate on one interval, because
PRNSeqs for big R are nearly periodic, so we are interested
in obtaining average on big R. We have (see equation at the
bottom of the page)

Similarly, the above equations are satisfied for autocorrelation
of a pseudo-random number sequence.
6.5 Proof of Lemma 4

Assume that cover (C) is a correlated cover, that is,
∀(i, j)CDC(i, j)≾Kij. Now, we define the partial LSB
embedding of the rate p(0 ≤ p≤ 1) denoted in Definition 1
as S = LSBEmbedding p,PRNG(C, M ) when M is a PRNSeq.
Referring to (3) and Lemma 4 (see (29) at the bottom of the
next page)
From (4) we have CDS,S(i, j) = CDS(i, j) =

∑(m, n)
(k, l)=(1, 1)

S(k, l)⊕ S((k + i)mod m, (l + j)mod n).
Now, we need to find out CDSS(i, j) using inclusion–

exclusion principal. Assume the stego (S) is a correlated
cover (C) whose few pixels have been changed by
PRNSeq, in order to count the differences with its
shifted cover C+ and shifted stego S+. We can count the
differences between set1 (C and S+) and set2 (C+ and
S) without common differences in these two sets. We
(k, l)− 1)× (2× PRNSeq2(k + i, l + j)− 1) = 0 (28)

× PRNSeq1(k, l)− 1)(2× PRNSeq2(k + i, l + j)− 1)

)

(2× PRNSeq1(k, l)− 1)(2× PRNSeq2(k + i, l + j)− 1)

1)+
∑

(k,l);PRNSeq1(k,l)=PRNSeq2(k+i,l+j)

(−1) = 0
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have (see (30))

Therefore, we always have CDS,S(i, j)≥ CDC,S(i, j). In
general, cover Clouds are correlated for any given (i, j),
and we can simply demonstrate statistically that
CDPRNSeq1,PRNSeq2(i, j) =
∑(m, n)

(k, l)=(1, 1)

PRNSeq1(k, l)⊕

≃ 1

R2

∑(R∗m,R∗n)

k, l( )= 1, 1( )
PRNSeq1(k,

{

= 1

R2

∑(R∗m,R∗n)

(k, l);PRNSeq1(k, l)=PRNSeq2

{

+
∑(R∗m,R∗n)

(k, l);PRNSeq1(k, l)=PRNSeq2(k+

= 1

R2

∑(R∗m,R∗n)

(k, l);PRNSeq1(k, l)=PRNSeq2

{

= 1

R2
R× m× R× n× 0×

{

CDC,S(i, j) =
∑(m, n)

(k, l)=(1, 1)

C(k, l)⊕ S((k + i)mod m, (l + j

=
∑(m, n)

(k, l)=(1, 1);C(k, l)=S((k+i)mod m, (l+j)mod n)

C(k, l

CDS,S(i, j) ≃
∑(m, n)

(k, l)=(1, 1);C(k, l)=C((k+i)mod m, (l+j)mod n)

C(k, l)⊕ C((

+
∑(m, n)

(k, l)=(1, 1);C(k, l)=S((k+i)mod m, (l+j)mod n)

C(k, l)⊕ S

+
∑(m, n)

(k, l)=(1, 1);S(k, l)=C((k+i)mod m, (l+j)mod n)

S(k, l)⊕ C

CDS,S(i, j) ≃ Kij + p× m× n

2
+ p× m× n

2
− p× m× n

2

( )2
= Kij + m× n× p× 1− p

4

( )
= Kij + m× n× 1− 1− p

2

( )
1− p

2

( )[ ]
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CDS,S(i, j) = CDS(i, j)CDC,S(i, j). Besides, we can
conclude easily from the definitions that CDC(i, j)≤
CDC,S(i, j), because the stego image has almost always
some different points from the cover image.
PRNSeq2((k + i)mod m, (l + j)mod n)

l)⊕ PRNSeq2(k + i, l + j)

}

(k+i, l+j)

PRNSeq1(k, l)⊕ PRNSeq2(k + i, l + j)

i, l+j)

PRNSeq1(k, l)⊕ PRNSeq2(k + i, l + j)

}

(k+i, l+j)

0+
∑(R∗m,R∗n)

(k, l);PRNSeq1(k, l)=PRNSeq2(k+i, l+j)

1

}

1

2
+ R× m× R× n× 1× 1

2

}
≃R
1 (m× n)/2

)mod n)

)⊕ S((k + i)mod m, (l + j)mod n) = p× m× n/2 (29)

k + i)mod m, (l + j)mod n)

((k + i)mod m, (l + j)mod n)

((k + i)mod m, (l + j)mod n)−
∑(m, n)

(k, l)=(1, 1);
S(k, l)=S((k+i)mod m, (l+j)mod n)
C(k, l)=S((k+i)mod m, (l+j)mod n)
S(k, l)=C((k+i)mod m, (l+j)mod n)

1
(30)
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