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Detecting Vanishing Points in Natural Scenes
with Application in Photo Composition Analysis
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Abstract—Linear perspective is widely used in landscape
photography to create the impression of depth on a 2D photo.
Automated understanding of the use of linear perspective in
landscape photography has a number of real-world applications,
including aesthetics assessment, image retrieval, and on-site
feedback for photo composition. We address this problem by
detecting vanishing points and the associated line structures in
photos. However, natural landscape scenes pose great technical
challenges because there are often inadequate number of strong
edges converging to the vanishing points. To overcome this
difficulty, we propose a novel vanishing point detection method
that exploits global structures in the scene via contour detection.
We show that our method significantly outperforms state-of-
the-art methods on a public ground truth landscape image
dataset that we have created. Based on the detection results,
we further demonstrate how our approach to linear perspective
understanding can be used to provide on-site guidance to amateur
photographers on their work through a novel viewpoint-specific
image retrieval system.

Index Terms—Vanishing Point; Photo Composition; Image
Retrieval.

I. INTRODUCTION

ECENTLY, with the widespread use of digital cameras

and other mobile imaging devices, there has been in-
creasing interest in the multimedia community in building
intelligent programs to automatically analyze the visual aes-
thetics and composition of photos. Information about photo
aesthetics and composition is shown to benefit many real-
world applications. For example, it can be used to suggest
improvements to the aesthetics and composition of photog-
raphers’ work through image re-targeting [2], [3], as well as
provide on-site feedback to the photographer at the point of
photographic creation [4]], [3].

In this paper, we focus on an important principle in photo
composition, namely, the use of linear perspective. It cor-
responds to a relative complex spatial system that concerns
primarily with the parallel lines in the scene. Indeed, parallel
lines are one of the most prevalent geometric structures in
both man-made and natural environments. Under the pinhole
camera model, they are projected into image lines which
converge to a single point, namely, the vanishing point (VP).
Because the VPs provide crucial information about the geo-
metric structure of the scene, automatic detection of VPs have
long been an active research problem in image understanding.
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Fig. 1.
“landscape” category of the AVA dataset. Manually labeled ground truth lines
are marked in green.

Natural scene images with vanishing points. Images are from the

In the literature, existing VP detection methods mainly
focus on the man-made environments, which typically consist
of a large number of edges or line segments aligned to
one or more dominant directions. To this end, numerous
methods have been proposed to cluster line segments into
groups, each representing a VP in the scene [6], [7], [8I,
[O], [10], [11]. These methods have successfully found real-
world applications such as self-calibration, 3D reconstruction
of urban scenes, and stereo matching.

However, little attention has been paid to the natural
landscape scenes — a significant genre in both professional
and consumer photography. In natural scene images, a VP
is detectable when there are as few as two parallel lines in
space. As shown in Figure [I] such VPs and the associated
geometric structures convey a strong sense of 3D space or
depth to the viewers. While human eyes have little difficulty
identifying the VPs in these images, automatic detection
of VPs poses great challenge to computer systems for two
main reasons. First, the visible edges can be weak and not
detectable via local photometric cues. Existing line segment
detection methods typically assume the gradient magnitude of
an edge pixel is above a certain threshold (e.g., Canny edge
detector [12]]) or the number of pixels with aligned gradient
orientations is above a certain threshold (e.g., LSD [13])).
However, determining the threshold can be difficult due to the
weak edges and image noise. Second, the number of edges
converging to the VP may be small compared to irrelevant
edges in the same scene. As a result, even if one can detect
the converging edges, clustering them into one group can be
demanding due to the large number of outliers.
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To overcome these problems, we propose to make use
of the image contours to detect edges in natural images.
Compared to local edge detectors, image contours encode
valuable global information about the scene, thus are more
effective in recognizing weak edges while reducing the number
of false detections due to textures. By combining the contour-
based edge detection with J-Linkage [14]], a popular multi-
model detection algorithm, our method has been shown to
significantly outperforms state-of-the-art methods on detecting
the dominant VP in natural scene images.

As an application of our VP detection method, we demon-
strate how the detected VPs can be used to improve the
usefulness of existing content-based image retrieval systems
in providing on-site feedback to amateur photographers. In
particular, we note that linear perspective is known as an
effective tool in recognizing the viewer as a specific unique
individual in a distinct place with a point of view [13l.
Therefore, given a photo taken by the user, we study the
problem of finding photos about similar scenes and with
similar viewpoints in a large collection of photos. These photos
can be potentially used to provide guidance to the user on
his own work. Further, in this task, we are also the first to
answer an important yet largely unexplored question in the
literature: How to determine whether there exists a dominant
VP in a photo? To this end, we design a new measure of
strength for a given candidate VP, and systematically examine
its effectiveness on our dataset.

In summary, the main contributions are as follows.

« We propose the research problem of detecting vanishing
points in natural landscape scenes and a new method for
dominant VP detection. By combining a contour-based
edge detector with J-Linkage, our method significantly
outperforms state-of-the-art methods for natural scenes.

« We develop a new strength measure for VPs and demon-
strate its effectiveness in identifying images with a dom-
inant VP.

o We demonstrate the application of our method for assist-
ing amateur photographers at the point of photographic
creation via viewpoint-specific image retrieval.

o To facilitate future research, we have created and made
available a manually labeled dataset for dominant VPs in
over 1,300 real-world natural scene images.

II. RELATED WORK
A. Vanishing Point Detection

Most existing VP detection algorithms are based on cluster-
ing edges in the image according to their orientations [6], [7]],
[8]]. In [1Q], Xu et al. studied various consistency measures be-
tween the VPs and line segments and developed a new method
that minimizes the uncertainty of the estimated VPs. Lezama et
al. [11] proposed to find the VPs via point alignments based
on the a contrario methodology. Instead of using edges,
Vedaldi and Zisserman proposed to detect VPs by aligning
self-similar structures [16]. As we discussed before, these
methods are designed for man-made environments. Identifying
and clustering edges for VP detection in natural scene images
still remain a challenging problem.

Recently, there is an increasing interest in exploiting special
scene structures for VP detection. For example, many methods
assume the “Manhattan World” model, indicating that three
orthogonal parallel-line clusters are present [17[], [18]], [9],
[19]. When the assumption holds, it is shown to improve the
VP detection results. But such assumption is invalid for typical
natural scenes. Other related work detect VPs in specific
scenes such as unstructured roads [20], [21], [22], but it
remains unclear how these methods can be extended to general
natural scenes.

B. Photo Composition Modeling

Photo composition, which describes the placement or ar-
rangement of visual elements or objects within the frame, has
long been a subject of study in computational photography.
A line of work concern themselves with known photographic
rules and design principles, such as simplicity, depth of field,
golden ratio, rule of thirds, and visual balance. Based on these
rules, various image retargeting and recomposition tools have
been proposed to improve the image quality [2f], [3]], [23],
[24]. We refer readers to [25] for a comprehensive survey
on this topic. However, the use of linear perspective has
largely been ignored in the existing work. Compared to the
aforementioned rules which mainly focus on the 2D rendering
of visual elements, linear perspective enables photographers to
convey the sense of 3D space to the viewers.

Recently, data-driven approaches to composition modeling
have gained increasing attention in the multimedia community.
These methods make use of community contributed photos
to automatically learn composition models from the data.
For example, Yan et al. [26] propose a set of composition
features and learn a model for automatic removal of distracting
content and enhancement of the overall composition. In [27],
a unified photo enhancement framework is proposed based
on the discovery and modeling of aesthetic communities
on Flickr. Besides offline image enhancement, composition
models learned from exemplar photos can also been used
to provide online aesthetics guidance to the photographers,
such as selecting the best view [28]], [S], recommending the
locations and poses of human subjects in a photograph [29],
[30], [31], and suggesting the appropriate camera parameters
(e.g., aperture, ISO, and exposure) [32]]. Our work also takes
advantage of vast data available through photo sharing web-
sites. But unlike existing work that each focuses on certain
specific aspects of the photo, we take a completely different
approach to on-site feedback and aim to provide compre-
hensive photographic guidance through a novel composition-
sensitive image retrieval system.

C. Image Retrieval

The classic approaches to content-based image retrieval [33]]
typically measure the visual similarity based on low-level
features (e.g., color, texture, and shape). Recently, thanks to
the availability of large-scale image datasets and computing
resources, complicated models have been trained to capture
the high-level semantics about the scene [34], [35], [36], [37].
However, because many visual descriptors are generated by
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local feature extraction processes, the overall spatial composi-
tion of the image (i.e., from which viewpoint the image is
taken) is usually neglected. To remedy this issue, [4] first
classify images into pre-defined composition categories such
as “horizontal”, “vertical”, and “diagonal”. Similar to our
work, [38] also explore the VPs in the image for retrieval.
However, it assumes known VP locations in all images, thus
cannot be applied to general image database where majority
of the images do not contain a VP.

III. GROUND TRUTH DATASET

To create our ground truth dataset, we leverage the open
AVA dataset [39]], which contains over 250,000 images along
with a variety of annotations. The dataset provides seman-
tic tags describing the semantics of the images for over
60 categories, such as “natural”, “landscape”, “macro”, and
“urban”. For this work, we used the 21,982 images labeled as
“landscape”.

Next, for each image, we need to determine whether it
contains a dominant VP and, if so, label its location. Note that
our ground truth data is quite different from those in existing
datasets such as York Urban Dataset (YUD) [40] and Eurasian
Cities Dataset (ECD) [8]]. While these datasets are focused on
urban scenes and attempt to identify all VPs in each image,
our goal is to identify a single dominant VP associated with
the main structures in a wide variety of scenes. The ability to
identify the dominant VP in a scene is critical in our targeted
applications related to aesthetics and photo composition.

Like existing datasets, we label the dominant VP by manu-
ally specifying at least two parallel lines in the image, denoted
as [, and Il (see Figure m) The dominant VP location is then
computed as v = l; X l,. Because our goal is to identify
the dominant VPs only, we make a few assumptions during
the process. First, each VP must correspond to at least two
visible parallel lines in the image. This eliminate other types
of perspective in photography such as diminishing perspective,
which is formed by placing identical or similar objects at
different distances. Second, for a VP to be the dominant VP
in an image, it must correspond to some major structures of
the scene and clearly carries more visual weight than other
candidates, if any. We do not consider images with two or more
VPs carrying similar visual importance, which are typically
seen in urban scenes. Similarly, we also exclude images where
it is impossible to determine a single dominant direction due
to parallel curves (Figure[2). Finally, observing that only those
VPs which lie within or near the image frame convey a strong
sense of perspective to the viewers, we resize each image so
that the length of its longer side is 500 pixels, and only keep
the dominant VPs that lie within a 1,000 x 1,000 frame, with
the image placed at the center. We used the size 500 pixels as a
reasonable compromise between keeping details and providing
fast runtime for large-scale applications.

We collected a total of 1,316 images with annotations of
ground truth parallel lines. The dataset is publicly available at

https://faculty.ist.psu.edu/zzhou/vp_labels.zip.

Fig. 2. Example natural scene images that are not suitable for this work. The
first two images show diminishing perspective. The third image has two VPs.
The last image contains parallel curves, not parallel lines.

IV. CONTOUR-BASED VANISHING POINT DETECTION FOR
NATURAL SCENES

Given a set of edges £ = {F1,..., En}, a VP detection
method aims to classify the edges into several classes, one for
each VP in the scene, plus an “outlier” class. Similar to [7],
we employ the J-Linkage algorithm [[14] for multiple model
estimation and classification. The key new idea of our method
lies in the use of contours to generate the input edges. As
we will see in this section, our contour-based method can
effectively identify weak edges in natural scene images and
reduce the number of outliers at the same time, leading to
significantly higher VP detection accuracy.

A. J-Linkage

Similar to RANSAC, J-Linkage first randomly chooses M
minimal sample sets and computes a putative model for each
of them. For VP detection, the j-th minimal set consists of
two randomly chosen edges: (Ej,, E;,). To this end, we first
fit a line I, to each edge E; € £ using least squares. Then, we
can generate the hypothesis v; using the corresponding fitted
lines: v; =1;, x 1, .

Next, J-Linkage constructs a N x M preference matrix P,
where the (7, j)-th entry is defined as:

if D(Ei,vj) < d)

1
Pij = { 0 otherwise M

Here, D(E;,v;) is a measure of consistency between edge
E; and VP hypothesis v;, and ¢ is a threshold. Note that
i-th row indicates the set of hypotheses edge FE; has given
consensus to, and is called the preference set (PS) of E;. J-
Linkage then uses a bottom-up scheme to iteratively group
edges that have similar PS. Here, the PS of a cluster is defined
as the intersection of the preference sets of its members. In
each iteration, the two clusters with the smallest distance are
merged, where the Jaccard distance is used to measure the
similarity between any two clusters A and B:
[AUB| - |AN Bl
LB =T U

The operation is repeated until the distance between any two
clusters is 1.

2

Consistency Measure. We intuitively define the consistency
measure D(FE;,v;) as the root mean square (RMS) distance
from all points on F; to a line I, such that passes through
v; and minimizes the distance:

1

2

1
D E;,v;) = mi — j 2
rvs (B, vj) 1:131}5;0 Npé. dist(p,1) , (3
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Fig. 3. Contour-based edge detection. (a) Original image. (b) The ultrametric contour map (UCM). (c) Filtered edges.

where IV is the number of points on F;.

B. Edge Detection via Contours

Because we rely on edges to identify the dominant VP in
an image, an ideal edge detection method should have the
following properties: (i) it should detect all edges that converge
to the true VPs, (ii) the detected edges should be as complete
as possible, and (iii) it should keep the number of irrelevant
or cluttered edges to a minimum. As we have discussed, local
edge-detection methods do not meet these criteria. Instead, a
successful method must go beyond local measurements and
utilize global visual information.

Our key insight is that in order to determine if an edge
is present at certain location, it is necessary to examine the
relevant regions associated with it. This is motivated by the
observation that humans label the edges by first identifying the
physical objects in an image. In addition, based on the level
of details they choose, different people may make different
decisions on whether to label a particular edge.

Accordingly, for edge detection, we employ the widely-
used contour detection method [41], which proposed a unified
framework for contour detection and image segmentation us-
ing an agglomerative region clustering scheme. In the follow-
ing, we first discuss the main difference between the contours
and edges detected by local methods. Then we show how to
obtain straight edges from the contours.

Globalization in Contour Detection. Comparing to the local
methods, the contours detected by [41] enjoy two levels of
globalization.

First, as a global formulation, spectral clustering has been
widely used in image segmentation to suppress noise and
boost weak edges. Generally, let W be an affinity matrix
whose entries encode the (local) similarity between pixels, this
method solves for the generalized eigenvectors of the linear
system: (D — W)v = ADwv, where the diagonal matrix D
is defined as D;; = Zj Wij. Let {vg,v1,...,vk} be the
eigenvectors corresponding the K + 1 smallest eigenvalues
0= X <A <--- < Ag. Using all the eigenvectors except
Vo, one can then represent each image pixel with a vector
in RX. As shown in [41]], the distances between these new
vectors provide a denoised version of the original affinities,
making them much easier to cluster.

Second, a graph-based hierarchical clustering algorithm is
used in [41] to construct an ultrametric contour map (UCM)
of the image (see Figure [B(b)). The UCM defines a duality

between closed, non-self-intersecting weighted contours and a
hierarchy of regions, where different levels of the hierarchy
correspond to different levels of detail in the image. Thus,
each weighted contour in UCM represents the dissimilarity of
two, possibly large, regions in the image, rather than the local
contrast of small patches.

From Contours to Edges. Let C = {C}, (5, ...} denote the
set of all weighted contours. To recover straight edges from the
contour map, we apply a scale-invariant contour subdivision
procedure. Specifically, for any contour C, let c; and c?
be the two endpoints of C;, we first find the point on Cj
which has the maximum distance to the straight line segment
connecting its endpoints:

p* = arg max dist(p, cjc3) . 4)

PeC;
We then subdivide C; at p* if the maximum distance is greater
than a fixed fraction « of the contour length:
cle?) > a0y . (5)

dist(p”*, i

By recursively applying the above procedure to all the
contours, we obtain a set of approximately straight edges
E ={Fi,...,En}. We only keep edges that are longer than
certain threshold [,,;,,, because short edges are very sensitive

to image noises (Figure Ekc)).

C. Experiments

In this section, we present a comprehensive performance
study of our contour-based VP detection method, and compare
it to the state-of-the-art. Similar to previous work (e.g., [7],
[9]), we evaluate the performance of a VP detection method
based on the consistency of the ground truth edges with the
estimated VPs. Specifically, let { ES}X | be the set of ground
truth edges, the consistency error of a detection o is:

1
err(0) = - > Drus(Ef,9) . (6)
k

For all experiments, we compute the average consistency error
over five independent trials.

1) Comparison of Edge Detection Methods: We first com-
pare our contour-based edge detection to the popular Canny
detector [12] and LSD [13] in terms of the accuracy of the
detected VPs. For our contour-based method, the parameters
are: a = 0.05, lnin = 40, and ¢ = 3. For Canny detector
and LSD, we tune the parameters [.,;, and ¢ so that the
highest accuracy is obtained. In this experiment, we simply
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0.3f Tretiak et al.
- --Lezamaetal.
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Consistency error (pixel)

Fig. 4. Vanishing point detection results. We show the cumulative histograms
of vanishing point consistency error w.r.t. the ground truth edges (Eq. (6)) for
all candidate methods.

keep the VP with the largest support set as the detection
result. Figure ] reports the cumulative histograms of vanishing
point consistency error w.r.t. the ground truth edges for all
three methods. As one can see, our contour-based method
significantly outperforms the other edge detection methods.

In Figure [5} we further show some example edge detection
results. Note that, since most VP detection methods rely on
clustering the detected edges, an ideal edge detector should
maximize the number of edges consistent with the ground
truth dominant VP, and minimize the number of irrelevant
edges. As shown, our contour-based method can better detect
weak yet important edges in terms of both the quantity and
the completeness. For example, our method is able to detect
the complete edges of the road in Figure [5[b), while the local
methods only detected parts of them. Also, only our method
successfully detected the edges of the road in Figure [5(c).

Another important distinction between our contour-based
method and the local methods concerns the textured areas in
the image. Local methods tend to confuse image texture with
true edges, resulting a large number of detections in these areas
(e.g., the sky region and the road in[5[d) and (e), respectively).
Such false positives often lead to incorrect clustering results
in the subsequent VP detection stage. Meanwhile, our method
treats the textured area as a whole, thus greatly reducing the
number of false positives.

2) Comparison with the State-of-the-Art: Next, we compare
our method to state-of-the-art VP detection methods. As we
discussed before, most existing methods focus on urban scenes
and make strong assumptions about the scene structures, such
as a Manhattan world model [[L7], [18], [9], [19]. Such strong
assumptions render these methods inapplicable to natural
landscape scenes.

While other methods do not explicitly assume a specific
model, they still benefit from the scene structures to various
extents. In Figure ] we compare our method to two recent
methods, namely Tretiak et al. [8] and Lezama et al. [11]. Note
that [[11]] uses the Number of False Alarms (NFA) to measure
the importance of the detected VPs. For fair comparison, we
keep the VP with the highest NFA. Figure 4| shows that the two
methods do not perform well on the natural landscape images.
The problem with [8] is that it assumes multiple horizontal VP

detections for horizon and zenith estimation, but there may not
be more than one VP in natural scenes. Similarly, [11] relies
on the multiple horizontal VP detections to filter redundant
and spurious VPs.

3) Parameter Sensitivity: We further study the performance
of our contour-based VP detection method w.r.t. the parameters
«, the minimum edge length [,,;,,, and the distance threshold
¢ in Eq. (I). We conduct experiments with one of these
parameters varying while the others are fixed. The default
parameter setting is « = 0.05, Iy, = 40, and ¢ = 3.

Performance w.rt. «. Recall from Section [V-B| that «
controls the degree to which a contour segment may deviate
from a straight line before it is divided into two sub-segments.
Figure [6fa) shows that the best performance is achieved with
a = 0.05.

Performance w.r.t. minimum edge length [,;,. Figure Ekb)
shows the performance of our method as a function of I,;y.
Rather surprisingly, we find that the accuracy is quite sensitive
to Imin. This is probably because that, for natural scenes, the
number of edges consistent with the dominant VP is relatively
small. Therefore, if l.,;, is too small, these edges may be
dominated by irrelevant edges in the scene; if [, is too large,
there may not be enough inliers to robustly estimate the VP
location.

Performance w.r.t. threshold ¢. Figure [6{c) shows the accu-
racy of our method w.r.t. the threshold ¢ in Eq. (I). As one
can see, our method is relatively insensitive to the threshold,
and achieves the best performance when ¢ = 3.

V. SELECTION OF THE DOMINANT VANISHING POINT

In real-world applications concerning natural scene photos,
it is often necessary to select the images in which a dominant
VP is present since many images do not have a VP. Further,
if multiple VPs are detected, we need to determine which one
carries the most importance in terms of the photo composition.
Therefore, given a set of candidates {v; }?:1 generated by a
VP detection method, our goal is to find a function f which
well estimates the strength of a VP candidate. Then, we can
define the dominant VP of an image as the one whose strength
is (i) the highest among all candidates, and (ii) higher than
certain threshold 7"

vt =arg (ri%ng (v;) - (7)
In practice, given a detected VP v; and the edges £ C £
associated with the cluster obtained by a clustering method
(e.g., J-Linkage), a simple implementation of f would be the
number of edges: f(v;) = |&;|. Note that it treats all edges in
&; equally. However, we have found that this is problematic
for natural images because it does not consider the implied
depth of each edge in the 3D space.

A. The Strength Measure

Intuitively, an edge conveys a strong sense of depth to the
viewers if (i) it is long, and (ii) it is close to the VP (Figure .
This observation motivates us to examine the implied depth of
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Fig. 5. Comparison of different edge detection methods. The four rows show the original images, and the edges detected by Canny detector, LSD, and our
contour-based method, respectively. Yellow edges indicate the edges consistent with the ground truth dominant vanishing point.
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Fig. 6. Accuracy of our method w.r.t. parameters o, lyin, and ¢, respectively.
each individual point on an edge, instead of treating the edge Image plane
» v=PD
4

as a whole.

Geometrically, as shown in Figure[7] let E be a line segment
consistent with vanishing point v = (v, v,, 1)7 in the 1mageE|
We further let D be the direction in 3D space (i.e., a point at
infinity) that corresponds to v: v = PD, where P € R3*% is
the camera projection matrix.

For any pixel on the line segment g = (g5, gy, 1)" € E, we
denote () as the corresponding point in the 3D space. Then,
we can represent () as a point on a 3D line with direction D:
@ = A+ D, where A is some reference point chosen on this
line, and A can be regarded as the (relative) distance between

In this section, all 2D and 3D points are represented in homogeneous
coordinates.

/

d
a=PA

f/{;Q \ \

Fig. 7. Illustration of our edge strength measure.

A and Q. Consequently, we have
q=PQ=PA+ ) D)=a+ v, )

where a = (ag, ay, 1)

T is the image of A. Thus, let I, and
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lg denote the distance on the image from ¢ and a to v,
respectively, we have

A=la/lg—1. )

Note that if we choose A as the intersecting point of the 3D
line corresponding to ' and the image plane, A represents the
(relative) distance from any point () on this line to the image
plane along direction D. In practice, although [, is typically
unknown and varies for each edge F, we can still infer from
Eq. () that X is a linear function of 1/l4. This motivates us
to define the weight of a pixel ¢ € E as (I +7)~ !, where 7
is a constant chosen to make it robust to noises and outliers.

Thus, our new measure of strength for v; is defined as

1
fo)=>" > T

EcEjqeE 1

(10)

Clearly, edges that are longer and closer to the VP have more
weights according to our new measure.

B. Experiments

1) Dominant Vanishing Point Selection: We first demon-
strate the effectiveness of the proposed strength measure in
selecting the dominant VP from the candidates obtained by our
VP detection algorithm. In Figure 8] we compare the following
three measures in terms of the consistency error of the selected
dominant VP:

Edge Num: The number of edges associated with each VP.

Edge Sum: The sum of the edge lengths associated with
each VP.

Proposed: Our strength measure Eq. (T0).

As shown, by considering the length of an edge and its
proximity to the VP, our proposed measure achieves the best
performance in selecting the dominant VP in the image.

0.9

0.8r

0.7

0.6¢

0.5y

—— Proposed
0.4¢ ; ..|==-Edge Sum | {
Edge Num

0.3

2 5 4 5 6 7 8 9 10
Consistency error (pixel)

Fig. 8. Experiment results on dominant vanishing point selection.

2) Dominant Vanishing Point Verification: Next, we evalu-
ate the effectiveness of the proposed measure in determining
the existence of a dominant VP in the image. For this experi-
ment, we use all the 1,316 images with labeled dominant VPs
as positive samples, and randomly select 1,500 images without
a VP from the “landscape” category of AVA dataset as negative
samples. In Figure [9] we plot the ROC curves of the three

different measures. As a baseline, we also include the result
of the Number of False Alarms (NFA) score proposed in [11],
which measures the likelihood that a specific configuration
(i.e., a VP) arises from a random image. One can clearly see
that our proposed measure achieves the best performance.

2
]
@
o
=
‘@
o
D_ N N
% 0.3 — Proposed
= - - -Edge Sum
F o2 9
Edge Num
0.1 Lezama et al. |]

Oo 0.1 02 03 04 05 0.6 07 0.8 09 1
False Positive Rate

Fig. 9. Experiment results on dominant vanishing point verification.

In Figure [I0fa) and (b), we further plot the percentage of
images as a function of our strength measure, and the average
consistency error, respectively. In particular, Figure [T0[b)
shows that the consistency error decreases substantially when
the strength score is higher than 150. This suggests that our
strength measure is a good indicator of the reliability of a VP
detection result.
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Fig. 10. The impact of VP strength on the accuracy of dominant VP detection.
We show (a) the percentage of images and (b) the average consistency error
as a function of our strength measure Eq. (T0).

VI. PHOTO COMPOSITION APPLICATION

The dominant VP and the image elements associated with
it (e.g., parallel lines, planes) encode rich information about
the 3D scene geometry. Such information enables us to gain
deeper understanding of the perspective effect in the photos,
hence can potentially facilitate many tasks in photography.
In this section, we demonstrate an interesting application in
automatic understanding of photo composition that aims to
provide on-site guidance to amateur photographers on their
work through composition-sensitive image retrieval.

Cloud-based photo sharing services such as flickr.com,
photo.net, and dpchallenge.com allow photographers
to access millions of photos taken by their peers around
the world. Such resources have been playing an increasingly
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important role in helping the amateurs improve their photog-
raphy skills. Specifically, considering the scenario where a
photographer is about to the take a photo of a natural scene,
he or she may wonder what photos peers or professional
photographers would take in a similar situation. Therefore,
given a shot taken by the user, we propose to find exemplar
photos about similar scenes with similar points of view in a
large collection of photos. These photos can then be used as
feedback to the user on his or her own work.

Meanwhile, as we illustrate in Figure [T} professional pho-
tographers and visual artists have long realized that linear
perspective provides us strong cues about the viewer’s position
and angle of perception. Motivated by this key insight, we
propose a novel similarity measure based on the detected
dominant VP in the image for viewpoint-specific image re-
trieval. Note that the idea of exploiting information about VPs
for retrieval has been previously studied in [38]]. But their
method assumes known VP locations in all images, hence
cannot readily be applied to general image collections where
the majority may not contain a VP. In contrast, we use our new
VP detection method and strength measure to automatically
detect the dominant VPs in the images. Further, [38] does not
consider image semantics for retrieval, hence its usage can be
limited in practice.

A. Viewpoint-Specific Image Retrieval

Given two images I; and
sum of two components:

D(Iialj):Ds(Iiajj)+Dp(Ii7]j)a (11)

where D, and D, measures the similarity of two images in
terms of the scene semantics and the use of linear perspective,
respectively. Below we describe each term in detail.

I;, our similarity measure is a

Semantic Similarity Dg: Recently, it has been shown that
generic descriptors extracted from the convolutional neural
networks (CNNs) are powerful in capturing the image seman-
tics (e.g., scene types, objects), and have been successfully
applied to obtain state-of-the-art image retrieval results [37]].
In our experiment, we adopt the publicly available CNN model
trained by [42] on the ImageNet ILSVRC challenge datasetﬂ
to compute the semantic similarity. Specifically, we represent
each image using the ¢/5-normalized output of the second fully
connected layer (full7 of [42]), and adopt the cosine distance
to measure the feature similarity.

Perspective Similarity D,: To model the perspective effect
in the image, we consider two main factors: (i) the location of
the dominant VP and (ii) the position of the associated image
elements. For the latter, we focus on the edges consistent with
the dominant VP obtained via our contour-based VP detection
algorithm. Let v; and v; be the locations of the dominant VPs
in images I; and I, respectively. We use &; (or £;) to denote
the sets of edges consistent with v; (or v;). Our perspective
similarity measure is defined as:

lvi — v,
)

Dp(Iian) = 71max (1 - O) +72K(5178]) )

12)

len

Zhttp://www.vlfeat.org/matconvnet/pretrained/

oo

FE==re==r===r=-==

Fig. 11.
the set of edges &; consistent with the dominant VP, we subdivide the image at
three different level of resolutions. For each resolution, we count the number
of edge points that fall into each bin to build the histograms Hﬁ,l =0,1,2.

Illustration of the construction of a three-level spatial pyramid. Given

where ||v; —v;]| is the Euclidean distance between v; and v;,
len is the length of the longer side of the image. We resize
all the images to len = 500.

Further, since each edge can be regarded as a set of 2D
points on the image, K (&;,£;) should measure the similarity
of two point sets. Here, we use the popular spatial pyramid
matching [43] for its simplicity and efficiency. Generally
speaking, this matching scheme is based on a series of in-
creasingly coarser grids on the image. At any fixed resolution,
two points are said to match if they fall into the same grid cell.
The final matching score is a weighted sum of the number of
matches that occur at each level of resolution, where matches
found at finer resolutions have higher weights than matches
found at coarser resolutions.

For our problem, we first construct a series of grids at
resolutions 0,1,..., L, as illustrated in Figure [T1] Note that
the grid at level I has 2' cells along each dimension, so the
total number of cells is 22/, At level I, let H/(k) and H} (k)
denote the number of points from &; and &; that fall into the
k-th cell, respectively. The number of matches at level [ is
then given by the histogram intersection function:

Zmln Hl(k))

Below we write Z(H/, H!) as Z' for short.

Since the number of matches found at level [ also includes
all the matches found at the level [ + 1, the number of new
matches at level [ is given by Z! — 7!+, Vi = 0,...,1 — 1.
To reward matches found at finer levels, we assign weight
2=(L=1 to the matches at level [. Note that the weight is
inversely proportional to the cell width at that level. Finally,
the pyramid matching score is defined as:

I(H}, H!) (13)

L—1
1
KL(&,&) = IL+ZW(II—IZ+1) (14)
=0
L
1 0 1 1
= 57 *ZWI . (15)
=1

Here, we use superscript “L” to indicate its dependency on the
parameter L. We empirically set the parameters for viewpoint-
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specific image retrieval for all experiments to: g
0.5,L = 6.

:’72:

B. Case Studies

In our experiments, we use the entire “landscape” category
of the AVA dataset to study the effectiveness of our new sim-
ilarity measure. We first run our contour-based VP detection
algorithm to detect the dominant VP in the 21,982 images in
that category. We only keep those VPs with strength scores
higher than 150 for this study because, as we discussed in
Section detections with low strength scores are often
unreliable. If no dominant VP is detected in an image, we
simply set the perspective similarity D, (I;,1;) = 0.

Figure [I2] shows the top-ranked images for various query
images in the AVA dataset. It is clear that our method is able
to retrieve images with similar content and similar viewpoints
as the query image. More importantly, the retrieved images
exhibit a wide variety in terms of the photographic techniques
used, including color, lighting, photographic elements, design
principles, etc. Thus, by examining the exemplar images
retrieved by our system, amateur photographers may conve-
niently learn useful techniques to improve the quality of their
work. Below we examine a few cases:

1%t row, red boxes: This pair of photos highlight the impor-
tance of lighting in photography. Instead of taking the picture
with overcast, it is better to take the shot close to sunset with
clear sky, as the sunlight and shadows could make the photo
more attractive. Also, it can be desirable to leave more water
in the scene.

6" row, blue boxes: These three photos illustrate the different
choices of framing and photo composition. While the query
image uses a diagonal composition, alternative ways to shoot
the bridge scene include using a vertical frame or lowering
the camera to include the river.

9t row, green boxes: This case shows an example where
photographers sometimes choose unconventional aspect ratios
(e.g., a wide view) to make the photo more interesting.

11** row, yellow boxes: Compared to the query image, the
retrieved image contains more vivid colors (the grass) and
texture (the cloud).

Besides, the last two rows of Figure [I2] show the typically
failure cases of our method, in which we also plot the edges
correspond to the detect VP in the query image. In the first
example, our VP detection method fails to detect the true
dominant VP in the image. For the second example, while the
detection is successful, our retrieval system is unable to find
images with similar viewpoints. In real-world applications,
however, we expect the size of the image database to be much
larger than our experimental database (with ~20K images) and
the algorithm should be able to retrieve valid results.

C. Comparison to the State-of-the-Art

We compare our method to two popular retrieval systems,
which are based on the HOG features [44]], [45] and the CNN
features, respectively. While many image retrieval methods
exist in the literature, we choose the two because (i) the CNN

features have been recently shown to achieve state-of-the-art
performance on semantic image retrieval; and (ii) similar to
our method, the HOG features are known to be sensitive to
image edges, thus serve as a good baseline for comparison.

For HOG, We represent each image with a rigid grid-like
HOG feature x; [44], [45]. As suggested in [36], we limit
its dimensionality to roughly 5K by resizing the images to
150 x 100 or 100 x 150 and using a cell size of 8 pixels.
The feature vectors are normalized by subtracting the mean:
x; = x; —mean(x;). We use the cosine distance as the simi-
larity measure. For CNN, we directly use D, (I}, I;) discussed
in Section as the final matching score. Obviously, our
method reduces to CNN if we set y; = o = 0 in Eq. (12).

Figure [13] shows the best matches retrieved by all systems
for various query images. Both CNN and our method are able
to retrieve semantically relevant images. However, the images
retrieved by CNN vary significantly in terms of the viewpoint.
In contrast, out method is able to retrieve images with similar
viewpoints. While HOG is somewhat sensitive to the edge
orientations (see the first and fourth examples in Figure [I3)),
it is not as effective compared to our method in capturing the
viewpoints and perspective effects.

Quantitative Human Subject Evaluation. We further per-
form a quantitative evaluation on the performance of our re-
trieval method. Unlike traditional image retrieval benchmarks,
currently there is no dataset with ground truth composition
(i.e., viewpoint) labels available. In view of this barrier, we
have instead conducted a user study which asks participants to
manually compare the performance of our method with that of
CNN based on their ability to retrieve images that have similar
semantics and similar viewpoints. Note that we have excluded
HOG from this study because (i) it performs substantially
worse than our method and CNN, and (ii) we are particularly
interested in the effectiveness of the new perspective similarity
measure D,,.

In this study, a collection of 200 query images (with VP
strength scores higher than 150) are randomly selected from
our new dataset of 1,316 images that each containing a
dominant VP (Section [[I). At our user study website, each
participant is assigned with a subset of 30 randomly selected
query images. For each query, we show the top-8 images
retrieved by both systems and ask the participant to rank the
performance of the two systems. To avoid any biases, no
information about the two systems was provided during the
study. Further, we randomly shuffled the order in which the
results of the two systems are shown on each page.

We have recruited 10 participants to this study, mostly
graduate students with some basic photography knowledge.
Overall, our system is ranked better for 76.7% of the time,
whereas CNN is ranked better for only 23.3% of the time.
This suggests our system significantly outperforms the state-
of-the-art for the viewpoint-specific image retrieval task.

VII. CONCLUSIONS

In this paper, we study an intriguing problem of detecting
vanishing points in natural landscape images. We develop a
new VP detection method, which combines a contour-based
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Fig. 12. Viewpoint-specific image retrieval results. Each row shows a query image (first image from the left) and the top-ranked images retrieved by our
method. Last two rows show some failure cases.
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Fig. 13. Comparison to state-of-the-art retrieval methods. For a query image, we show the top four or five images retrieved by different methods, where each
row corresponds to one method. First row: Our method. Second row: CNN. Third row: HOG.

edge detector with J-Linkage, and show that it outperforms
state-of-the-art methods on a new ground truth dataset. The
detected VPs and the associated image elements provides
valuable information about the photo composition. As an
application of our method, we develop a novel viewpoint-
specific image retrieval system which can potentially provide
useful on-site feedback to photographers.

One limitation of our current system is that it is not designed
to handle images in which the linear perspective is absent.
For example, to convey a sense of depth, other techniques
such as diminishing objects and atmospheric perspective have
also been used. Meanwhile, instead of relying solely on the
linear perspective, experienced photographers often employ
multiple design principles such as balance, contrast, unity, and
illumination. In the future, we plan to explore these factors for
extensive understanding of photo composition.
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