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Abstract—The combined impact of node architecture and
workload characteristics on off-chip network traffic with per-
formance/cost analysis has not been investigated before in the
context of emerging cloud applications. Motivated by this ob-
servation, this paper performs a thorough characterization of
twelve cloud workloads using a full-system datacenter simulation
infrastructure. We first study the inherent network characteristics
of emerging cloud applications including message inter-arrival
times, packet sizes, inter-node communication overhead, self-
similarity, and traffic volume. Then, we study the effect of
hardware architectural metrics on network traffic. Our exper-
imental analysis reveals that (1) the message arrival times and
packet-size distributions exhibit variances across different cloud
applications; (2) the inter-arrival times imply a large amount
of self-similarity as the number of nodes increase; (3) the node
architecture can play a significant role in shaping the overall
network traffic; and finally, (4) the applications we study can be
broadly divided into those which perform better in a scale-out
or scale-up configuration at node level and into two categories,
namely, those that have long-duration, low-burst flows and those
that have short-duration, high-burst flows. Using the results of (3)
and (4), the paper discusses the performance/cost trade-offs for
scale-out and scale-up approaches and proposes an analytical
model that can be used to predict the communication and
computation demand for different configurations. It is shown
that the difference between two different node architecture’s
performance per dollar cost (under same number of cores system
wide) can be as high as 154 percent which disclose the need for
accurate characterization of cloud applications before wasting the
precious cloud resources by allocating wrong architecture. The
results of this study can be used for system modeling, capacity
planning and managing heterogeneous resources for large-scale
system designs.
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I. INTRODUCTION

Cloud applications, ranging from interactive query-based
jobs to high performance computing applications are driving
the development of current datacenters that are composed of
tens of thousands of nodes to handle extremely large amounts
of data processing and operation execution. Efficiently execut-
ing these applications requires having sufficient computational,
storage, and network bandwidth resources. For example, many
Map-Reduce jobs, have bursty network communications during
the map and data shuffling phases [1, 2, 3, 4, 5]. Similarly,
many cloud applications and high-performance computing
(HPC) applications need high communication bandwidth [6].

While every other aspect of datacenter performance have
been improved drastically, network bandwidth and latency has
been a source of performance degradation in cloud computing
for years [6, 7]. High network latency abandons any hope for

getting performance benefit on large number of machines and
makes the scale-out approach [8, 9] challenging for network-
intensive applications. On the other hand, the ever-growing
data sizes in Big Data era, that cannot be processed in a
single server or reside in memory makes distributed processing
unavoidable. Therefore, given a workload and a set of com-
putational and storage resources, an in-depth study of network
traffic demand, can be the key to reducing costs and boosting
performance. Analyzing the combined impact of hardware
architecture and workload can help cloud providers in design-
ing performance/cost efficient datacenters. There exists prior
works [10, 11, 12] that studied workload characteristics and
network traffic in datacenters. High-performance computing
(HPC) nodes produce higher traffic bursts compared to low-
performance computing nodes and on the other hand can han-
dle part of traffic within cores using inter-core interconnection
network. In addition to node architecture, the other factor that
shapes message traffic is the inherent temporal characteristics
of the workload. Most of the previous studies on network
topology exploration employ either synthetic traffic or non-real
workloads [13, 14, 15]. However, the hardware architectures
employed by datacenters and workloads are changing rapidly;
as a result, the traffic patterns and application characteristics
taken from prior studies may not be applicable to current
systems. To the best of our knowledge, none of these studies
investigated the impact of node architecture and real workload
characteristics on inter-node network traffic.

In addition, conventional trend in academia and industry
suggests using a cluster of commodity servers, which is
called scale-out for cloud computing [8]. Appuswamy et
al. [16] suggest adding more resources to a single server,
which is called scale-up approach. In this paper, we discuss
performance/cost trade-offs for these controversial approaches
for different cloud applications. We consider different types
of cloud workloads ranging from those that represent Map-
Reduce and client-server paradigms in CloudSuite [17, 18, 19]
to memory-intensive large-scale scientific computing bench-
marks in Mantevo [20], and network-intensive parallel graph
algorithms in Graphlab [21, 22].
The main goal of this paper is to study the combined impact
of node architecture (the number of cores, intra-node network,
cache/memory hierarchy) and cloud workload characteristics
on inter-node network traffic as well as performance/cost
analysis. Using a set of twelve cloud workloads with different
characteristics, the specific research questions that we strive to
answer can be summarized as follows:

• What is the message inter-arrival times’ distribution and
packet size distribution of different cloud workloads to



regenerate the same traffic pattern?

• What factors affect the burstiness of network traffic in the
cloud? How much role does the node architecture play in
order to design better network buffer managements?

• What is the ratio of communication time over computation
time for cloud workloads and how does it scale with respect
to the volume of data to provision network capacity for each
cloud workload?

• How does the bandwidth requirements of different cloud
benchmarks change with respect to the basic node parameters
such as the number of cores and cache/memory capacity?
This observation helps a designer to provide enough net-
work resources when configuring resources to the current
datacenter architecture.

• How much is the performance/cost of different workloads for
scale-out or scale-up approaches? which helps us to find the
right way to expand the datacenter for the running workloads.

• What is the impact of node architecture on network traffic
and performance/cost? Which of scale-out or scale-up ap-
proaches is better for each studied cloud workloads?

We carried out a series of experimental study using a full-
system simulation that gives us exploring the effect of hard-
ware parameters on the system performance. It also helps to
isolate traffic pattern of different applications [23]. We used a
set of modern workloads in cloud study including Cloudsuite
[17, 18, 19], Mantevo [20] and Graphlab [21, 22] benchmark
suites. We also generalized experimental study for large-
sized datacenters to ease capacity planning and performance
optimization. We can derive the following results from our
experimental study:
• The studied workloads can be categorized into three different

groups: memory-intensive applications, network bandwidth-
intensive applications, and network latency-sensitive appli-
cations. Applications belonging to different groups require
different design optimization considerations.

• Running network bandwidth-intensive or latency-sensitive
applications on a scale-out hardware architecture does not
give us much performance/cost benefit compared to the scale-
up approach. On the other side, memory-intensive appli-
cations scale well and the scale-out approach gives better
performance/cost.

• For most of the studied cloud benchmarks, the packet inter-
arrival times follow lognormal or extreme value distribution,
which is a long-tailed distribution and causes self-similarity
in network traffic. Self-similar traffic increases queue length
in the network and this degrades the performance of the
system. There exist prior works on how to perform buffer
management in the presence of self-similarity in network
traffic [24]. Self-similar traffic is quantified by a Hurst
parameter. Larger Hurst parameter represents higher self-
similarity for a flow and more possibility to congest the
network. Consequently, if we knew the self-similarity quan-
tity of each application in advance, it would be possible
to employ better buffer management and achieve better
performance. It was observed that increasing the dataset size
and the number of nodes increase the hurst parameter for
self-similarity.
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Fig. 1: A three-layer datacenter architecture.

• We used the parameters of AMD Opteron server processors
[25, 26] and observed that the node architecture (e.g., number
of cores, cache/memory capacity) plays an important role
on bandwidth; for instance, the effect of node configuration
(under the same number of cores system wide) can be as
much as 40.7% on execution time and 154% on performance
per dollar; and the effect of network configurations on
execution time can be as much as 74%.

The rest of this paper is structured as follows. Section II
discusses the motivation and background behind this work.
Section III explains experimental setup. Section IV studies net-
work characteristics of studied workloads. Section V describes
the evaluation results. Section VI summarizes the potential
implications of our major findings. Section VII studies related
work and finally Section VIII concludes the paper.

II. MOTIVATION AND BACKGROUND

A. Motivation

With the rapid increase in consumer demands and increasing
complexity of the cloud applications, datacenter designers are
steadily revisiting design of nodes and network architectures
in datacenters. As both applications and node architectures are
rapidly changing, analyzing the impact of both on network
traffic is becoming increasingly important. Large cloud com-
puting vendors such as Facebook, Amazon, and Google rely
heavily on traditional network structures, which consist of two
or three levels of switch hierarchy shown in Figure 1 [10, 14].

As technology improves, more and more cores are being
embedded into a single node and the communication band-
width requirement of datacenters keeps increasing. As pointed
out by prior studies [6, 7, 13], one of the main limitations of
today’s large-scale computing is the network communication
latency and bandwidth. There have been several prior studies
attempted to find better network topologies and routing algo-
rithms in datacenters [13, 14]. However, to our knowledge,
there is no prior work that characterizes the combined im-
pact of machine architecture/parameters and cloud application
characteristics on the network traffic, performance/cost of
scalability. Such a study could help us identify the application’s
specific bottlenecks and ultimately reach cost-efficient data-
center designs for different characteristics of cloud workloads.
In addition, accurate workload characterization is important
for system modeling and capacity planning. Specifically, the
capacity planning for large-scale system design needs more
accurate modeling and understanding of workload requirement
and behavior. Operating and running large computation in large
scale is expensive and large cloud vendors have to know how to



expand node architecture and network architecture resources to
satisfy the ever-increasing job workload demands. Recent trend
in academia and industry is to use large number of commodity
servers for cloud computing [8, 9]. However, based on network
communication pattern, different workloads have completely
different performance metrics for scale-up and scale-out ap-
proach. Therefore, in this paper, we conduct a simulation-based
study, using a full-system simulator, that simplifies design
space exploration, to perform such evaluations in smaller scale
to find out the network traffic pattern of these applications in
small-scaled systems and generalize it to large-scale ones. To
this end, we derive an analytical model and use non-linear
regression analysis to find the accuracy of the predicted model.
B. Background

Traditional datacenter architectures consist of two or three
layers structured as a tree, where higher layer switches have
high capacity with more ports but more expensive. In order to
reduce the cost, most datacenter network designers use over-
subscription factor of 2.5:1 to 8:1 [13]. An over-subscription
of n:1 means that in worst case traffic patterns, only 1/n of
the total communication bandwidth is available to different
nodes in that traffic pattern. The concurrent flows for each
cloud application plays an important role on how much we can
over-subscribe a network architecture. For example, if an ap-
plication has all-to-all communication pattern, oversubscribing
the network would degrade the performance since the network
would be the bottleneck resource. Concurrent flow analysis
can guide system administrative on choosing the appropriate
factor for over-subscription. Figure 1 shows an example of a
three-layer datacenter network architecture, where the servers
at each rack are connected to the Top of Rack (ToR) switches
with 1Gbps Ethernet links. ToR switches are connected to the
aggregate switches using 10 Gbps links and finally aggregate
switches are connected to the core switches using a fat-tree
topology. It is important to provision enough bandwidth for
each link in the hierarchy when we scale-up or scale-out the
servers. Network traffic can be distinguished as either node-
to-node (East-West) communication or in-out traffic (North-
South). North-South traffic patterns happen in client-server
applications, where the clients from the internet side (Figure 1)
send queries to the servers and get responses. The communica-
tion pattern in North-South traffic patterns is mainly between
client and servers and the servers do not have communication
among themselves. While, in East-West traffic patterns, the
communication is mainly among servers. The client-server and
interactive query-base applications in Cloudsuite have North-
South traffic pattern and the servers never communicate with
each other. However, most scientific benchmarks like graph
algorithms from Graphlab and Mantevo benchmarks in our
experiments have East-West traffic behavior.

Provisioning for East-West traffic is more difficult than
North-South traffic, because North-South traffic challenges
can be solved by means of load balancing and replication
techniques. However, it has been extensively discussed that
East-West network bandwidth and latency is the main source
of performance degradation in large-scale computing [6].
Therefore, we focus on East-West traffic patterns as dominant
behavior in datacenters.

III. EXPERIMENTAL SETUP

In this section, we describe the simulation setup and differ-
ent node and network architectures that we tested. To capture
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Fig. 2: High-level view of the simulated architecture.

TABLE I: Node parameters and their default values.

Processor parameters and their default values
Clock frequency 2400MHz
Main Memory latency 150cycles
L1 caches Split I and D, 64kB private, 2-way, 64B, LRU,

write-through, 2-cycle hit
L1 TLB Split I and D, 4kB private, 32 entries, 2-cycle

latency
L2 cache Unified, 1MB private, inclusive, 4-way, 64B, LRU,

write-back, 10-cycle hit
L3 cache 4MB shared, NUCA, inclusive, 16-way, 64B, LRU,

write-back, 4-cycle tag, 10-cycle data hit, 40-cycle
CPU to L2

TABLE II: Different node architectures considered in this
work.

Architecture L3 size/latency Memory Size cores
Default 4MB/40cycles 512M 1

Double Cache 8MB/60cycles 512M 1
Double memory 4MB/40cycles 2048M 1

Dual-core 8MB/60cycles 1024M 2
4-core 16MB /80cycles 2024M 4
6-core 24MB/100cycles 6144M 6

fine-grained network traffic pattern (in the granularity of micro
second) for any specific workload, we employed COTSon full-
system simulator [27, 28], that is based on AMD Simnow [29].
Simnow simulates an entire server machine including cores,
memory, I/O and network interfaces. To simulate multiple
nodes, COTSon provides networking for Simnow and uses
a parallel discrete-event model, allowing the simulation of
multi-core clusters. The simulator uses a mediator to provide a
network interface between nodes (or servers) [30], and it uses
Ubuntu 64-bit x-86 3.5.0-23-generic Linux as the operating
system.

A. Simulated Configurations

1) Node Architectures: We used the parameters of an AMD
Opteron server processor as a baseline in our simulations
[25]. Table I gives the main architectural parameters of the
baseline system configuration. Each core has its own private
instruction and data L1 and L2 caches and an L3 cache is
shared among all the cores in the processor. The memory,
L3 cache, network interface and DIMM banks are connected
through a hub device. Figure 2 shows the target architecture
simulated in our experiments. Table II shows the different node
architectures varied in this work. We changed the number of
servers from 1 to 40 (scale-out degree) and the number of
cores per node from 1 to 6 (scale-up degree).



TABLE III: Different network architectures.

Network Parameter Network 1 Network 2 Network 3
Ports 48*1 GbE 48*1 GbE 48*1/10 GbE

Maximum Bandwidth 1 Gbps 1 Gbps 100 Mbps
Latency 4µs 40µs 4µs
cfactor 2 10 10

2) Network Architectures: We used three different network
architectures with different bandwidth, latency and congestion
parameter, as shown in Table III. We used the standard ToR
switches that contain 48 GigE ports. This table specifies
each network configuration in terms of maximum available
bandwidth of links (in Gbps), minimum latency of the switches
(in µs) and a congestion factor (cfactor) that shows the queuing
latency of the switches.
B. Evaluated Workloads

We used a diverse set of cloud applications ranging
from interactive query-based to high-performance scientific
workloads. The workload set include seven programs from
Graphlab benchmark suite [21], two programs from Cloudsuite
benchmarks [17], and three programs from Mantevo bench-
marks [20]. The twelve benchmark programs used in this work
and short descriptions can be summarized in Table IV1. The
graph analytic toolkit from Graphlab has different applications
that analyze a graph structure. As input for these applications,
we used Stanford large network dataset collections [31] which
include different graphs from social networks and communica-
tion networks. We also used two benchmarks from Cloudsuite,
that are based on online applications. The Graphlab uses Open
MPI and Hadoop implementation of Map-Reduce to perform
graph computations on large graphs. The Mantevo benchmarks
are open-source mini-applications to analyze, predict and im-
prove HPC systems.
C. Evaluation Methodology

To quantify the impact of node and network architectures on
the network traffic pattern and overall workload performance,
we evaluate five different scenarios:

1) Changing the number of cores per socket, and increasing
the total cache/memory capacity, we evaluate the effect
of scale-up on network communication as well as perfor-
mance/cost trade-offs.

2) Changing the capacity of LLC per node, we determine
the memory-intensity of the applications.

3) Changing the total number of nodes in the system, we
evaluate the network traffic pattern as well as the traffic
self similarity metrics.

4) Changing the network bandwidth and latency, we deter-
mine the sensitivity of the applications to the network
configurations.

5) We compare the scale-out of 40 single-core machines
with the scale-up of 12 quad-core machines for different
applications.

D. Metrics

The metrics used to evaluate the impact of node configura-
tion and workload characteristics on network traffic are:

1The names in parentheses are abbreviations used in this paper

• Communication over computation overhead gives the
overheads incurred due to parallel execution. This metric can
be used to evaluate the communication overhead experienced
when running a given benchmark in parallel.

• Packet inter-arrival times and packet size distribution
These metrics, capture the burstiness of the incoming traffic
and if known by a designer, he/she can regenerate the traffic
pattern for synthetic traffic generation. Furthermore, know-
ing these metrics in advance help us to provision network
buffers and have better bandwidth allocation for different
applications.

• Self similarity indicates the burstiness of the network traffic
for different benchmarks.

• Bandwidth requirement gives the amount of bandwidth
needed between different nodes for a given dataset and
hardware architecture.

• Concurrent flows shows the maximum number of con-
current flows in an application/workload during execution.
This metric can be used to predict the required bisection
bandwidth of each application to choose appropriate over-
subscription factor. For example, if an application has an
all-to-all traffic pattern (highest number of the concurrent
flows), over-subscribing the network degrades the overall
system performance.

• Performance per dollar cost indicates how much perfor-
mance increase we will get for each dollar we spend on
system configuration.

IV. NETWORK CHARACTERISTICS’ OF APPLICATIONS

A. Inter-arrival Times and Self Similarity

Most prior works on datacenter networks use synthetic
traffic with exponential distribution to tune network and/or
application parameters. However, in our experiments the inter-
arrival time of our cloud applications follow a long-tailed
distribution [34], that can result in performance degradation,
unless we provision enough buffers in the network.

We found that, for most of the evaluated graph analytic
benchmarks, the generalized extreme value distribution 2 gives
the best fit for packet inter-arrival times’ distribution. We
further observed that, the lognormal distribution, which has
two degrees of freedom, seems to be a good fit for Graphlab
benchmarks. Table VI lists the parameters for each distribution
using the maximum likelihood estimation and the normalized
Euclidean distance (error) we obtain for each distribution.

Similar to our finding, prior studies [35, 36] have shown that
the traffic pattern of Ethernet follows a self-similar distribution
which degrades network performance. Self-similar processes
can be described using long-tailed distributions like Pareto,
lognormal, and Weibull distribution. Self-similarity in networks
is not a pleasant phenomenon, since network performance
can degrade with increasing self-similarity due to, primarily,
the queue length increase. The effect of self similarity on
network performance is studied by Park et al. [37]. Taqqu et al.
[34] proposed several strategies to estimate the self similarity
parameter. We follow [34] and evaluate Hurst parameter as
an estimation of self similarity. Table V gives the result of

2Generalized extreme value distribution has three degrees of freedom and
can result a better fit with less error



TABLE IV: Evaluated workloads.

Application Description
pagerank (pgrnk) An algorithm used by Google that computes the pagerank of each vertex in the graph.
format convert (fcvt) Converts a graph from a specific format, for example snap, tsv, adj or binsv4 to another format.
undirected triangle count (udtc) Counts the total number of triangles in a graph using the algorithm in [32].
directed triangle count (dtc) Counts the total number of directed triangles in the graph.
kcore decomposition (kcore) Iteratively computes sub graphs of k cores in a given graph. A sub graph is called k-core if and only if all vertices in the sub

graph is at least of degree k.
connected components (cc) Computes all connected components and the number of vertices in that component for a given graph.
approximate diameter (apxr) Computes the approximate diameter of a given graph using the proposed algorithm in [33].
Data Serving (dsrv) A benchmark from Cloudsuite [19] for data store systems that is used for large-scale web applications.
memcached (mem) A client-server architecture for distributed memory caching. The servers keep key-value stores and clients send query for these

key-values. The keys are at most 250 bytes and values are at most 1MB.
CoMD A part of Mantevo benchmarks and is an mpi implementation of molecular dynamics algorithms which is used in material science.
MiniFE An approximation to an unstructured implicit finite element code. The application was configured with MPI support.
HPCCG Implements a Conjugate Gradient solver, where the coefficient matrix is stored in a sparse matrix format.

TABLE V: Hurst parameter estimation for different number of
nodes.

# nodes
Method aggvar boxper diffvar peng per R/S

5 0.478 0.454 0.253 0.448 0.430 0.571
10 0.484 0.461 0.388 0.485 0.441 0.577
15 0.541 0.472 0.453 0.580 0.453 0.601
20 0.584 0.480 0.666 0.597 0.462 0.653
40 0.634 0.520 0.712 0.621 0.482 0.664

this estimation using the different strategies discussed in [34].
It is observed that increasing the number of nodes increases
the self-similarities. Consequently, network designer need to
provision more buffers when running the workloads on large
number of machines. Those flows, which have higher Hurst
parameter, fill up the networks buffers and non-self similar
traffics would be discarded. By knowing the Hurst parameter
for different flows, a designer can estimate queue length for
network buffers and potentially design better buffer manage-
ment system.

B. Packet Size Distribution

In addition to the message inter-arrival times, packet size
distribution has to be known for regeneration of the same
traffic pattern. For instance, one needs to consider a higher
network bandwidth and more buffers in networks with larger
packet sizes. Here, we report the analysis results of packet
size distribution of our benchmarks. The simulation results, in
Figure 3 show that packet size distribution for the benchmarks
which use Map-Reduce framework follow a bimodal distribu-
tion with two peaks in 66 bytes and 1514 bytes, that is the max-
imum Ethernet packet size. Pagerank, approximate diameter,
connected component, format convert, directed triangle count
and undirected triangle count are the applications, which have
larger packet sizes with a bimodal distribution. However, for
web applications, packet sizes have a multi-modal distribution
with smaller packets. Memcached, data serving and kcore
are three applications that have a multi-modal packet size
distribution with fewer packet sizes. Knowing the packet size
distribution of these workloads helps us to perform better
traffic and quality of service (QoS) management in the network
only by extracting the packet size in the header. Smaller
packets can get higher priority than larger packets. Also the
high frequency of large packets (1514 bytes) shows the room
for improving the packet control protocol in current datacenter
networks to allow transmitting higher sizes of packets.

Algorithm 1: Computing concurrent flows.
Input: logs of all nodes communications including packet time and size.
Output: Number of concurrent flows.

1 Partition all logs from a source (S) to any destination (D).
2 Get the inter-arrival times (IAT) vector of the logs in 1 with packet size (PS)

vector.
3 Compute flow rate (FR) vector from S to any D with zero-division protection as
FR[i] = PS[i]/(IAT [i] + 1) i = 1..n.

4 Compute mean of flow rate vector (MFR) as a threshold.
5 For all D, flow from S to D (F(S,D)) exists if its FR[i] is higher than MFR.
6 At any time for all D, flow duration from S to any D (FD(S)) is sum of the
IAT [i] i = 1..n which its F (S,D) exists.

7 Repeat 1 for any other source.

C. Concurrent Flow Analysis

Different applications generate different ranges of long-term
or short-term traffic flows. Datacenter networks should be
able to tolerate large traffic bursts, provide low latency for
short flows and high utilization for long flows. In addition,
the number of concurrent flows in an application gives us a
metric to determine how much the bisection bandwidth is being
utilized in the network. Computing the number of concurrent
flows for an application helps us to have a better understanding
of the bisection bandwidth utilization of that application. This
helps an administrator to determine how to over-subscribe the
network for cost reduction. To compute concurrent flows of
each application, we use the steps given in Algorithm 1. Using
the time and size of packets exchanging between two nodes,
Algorithm 1 finds all the longest contiguous intervals that these
two nodes send receive. The threshold of having a connection
is the mean rate of all communications, i.e., if packet size per
its inter-arrival time is higher than the mean (threshold), that
interval is considered as a flow between these two nodes.

Table VII shows the comparison of concurrent flows from
the master node to all slave nodes for each application run-
ning on a 10 nodes. We observed that, kcore, Data serving,
and directed triangle count have the most concurrent flows.
Therefore, running these applications on the same rack can
be expected to reduce congestion in the higher layers of the
datacenter hierarchy. In addition, we compute average flow du-
ration of different benchmarks, some benchmarks, like kcore,
data serving, and memcached, have long-term flow duration
which makes them suitable fit for hybrid architecture (circuit
and packet switching) networks where long-term duration
flows can go through the circuit switching network. Other
benchmarks, with short-term flows, need to go through the
packet switching network part of the hybrid network.
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Fig. 3: CDF of packet sizes in the graph analytic and web benchmarks.

TABLE VI: Error and best fitting parameters of different distributions for packet inter-arrival times in different benchmarks.

Application
Distribution exponential gamma gev weibull lognormal

Pagerank Error: 0.030
Mean: 0.6711

Error: 0.0058
Shape: 0.1516
Scale: 0.435

Error: 9.5e-4
Shape: 1.85, Scale: 2.76e-5

Location: 1.47e-5

Error: 7.1e-4
Scale: 1.51e-4
Shape: 0.34

Error: 5.7e-4
Mean: -10.0828

SD: 2.39

connected components Error: 0.0386
Mean: 0.0086

Error: 0.0063
Shape: 0.138
Scale: 0.062

Error: 5.4e-4
Shape: 1.397, Scale: 1.93e-5

Location: 1.30e-5

Error: 8.6e-4
Scale: 1.05e-4
Shape: 0.32

Error: 6.1e-4
Mean: -10.4062

SD: 2.20

data serving Error: 9.3404
Mean: 1.91

Error: 0.0308
Shape: 0.158
Scale: 12.07

Error: 0.1240
Shape: 4.43, Scale: 0.459

Location: 0.1035

Error: 0.0286
Scale: 0.347
Shape: 0.213

Error: 0.0141
Mean: -4.178

SD: 8.40

kcore Error: 0.0079
Mean: 0.0028

Error: 0.0045
Shape: 0.397
Scale: 0.007

Error: 5.7e-4
Shape: 0.805, Scale: 0.00047

Location: 0.00039

Error: 0.0019
Scale: 0.0012
Shape: 0.59

Error: 0.0013
Mean: -7.54

SD: 1.69

memcached Error: 9.9728
Mean: 2.037

Error: 0.0214
Shape: 0.107
Scale: 19.08

Error: 0.0096
Shape: 7.76, Scale: 9.27e-5

Location: 1.29e-5

Error: 0.0156
Scale: 0.0303
Shape: 0.163

Error: 0.0125
Mean: -6.834

SD: 7.94

directed triangle count Error: 0.0282
Mean: 0.0063

Error: 0.0059
Shape: 0.1386
Scale: 0.0456

Error: 4.9e-4
Shape: 1.12, Scale: 1.50e-5

Location: 1.18e-5

Error: 8e-4
Scale: 7.117e-5

Shape: 0.34

Error: 5.5e-4
Mean: -10.672

SD: 1.94

undirected triangle count Error: 0.0345
Mean: 0.0077

Error: 0.0062
Shape: 0.138
Scale: 0.055

Error: 6.9e-4
Shape: 1.101, Scale: 1.62e-5

Location: 1.37e-5

Error: 8.7e-4
Scale: 8.76e-5
Shape: 0.34

Error: 7.1e-4
Mean: -10.49

SD: 1.97

approximate diameter Error: 0.0661
Mean: 0.014

Error: 0.0072
Shape: 0.127
Scale: 0.112

Error: 7.2e-4
Shape: 1.088, Scale: 1.60e-5

Location: 1.39e-5

Error: 9.7e-4
Scale: 9.26e-5
Shape: 0.32

Error: 7.3e-4
Mean: -10.473

SD: 2.00

format convert Error: 0.0696
Mean: 0.015

Error: 0.0073
Shape: 0.123
Scale: 0.121

Error: 6.5e-4
Shape: 1.026, Scale: 1.43e-5

Location: 1.26e-5

Error: 9.5e-4
Scale: 7.77e-5
Shape: 0.32

Error: 6.8e-4
Mean: -10.62

SD: 1.94

CoMD Error: 0.4073
Mean: 0.00239

Error: 0.2204
Shape: 0.152
Scale: 0.0157

Error: 1.31e-2
Shape: 0.7142, Scale: 1.0832e-5

Location: 1.079e-5

Error: 1.57e-2
Scale: 3.72e-5
Shape: 0.3955

Error: 1.10e-2
Mean: -11.08

SD: 1.67

MiniFE Error: 0.5245
Mean: 0.00389

Error: 0.2084
Shape: 0.140
Scale: 0.0277

Error: 6.5e-2
Shape: 1.2634, Scale: 1.048e-5

Location: 5.476e-6

Error: 3.41e-2
Scale: 7.04e-5
Shape: 0.305

Error: 3.37e-2
Mean: -11.07

SD: 2.91

HPCCG Error: 0.444
Mean: 0.0029

Error: 0.2100
Shape: 0.154
Scale: 0.0188

Error: 4.4e-2
Shape: 1.068, Scale: 1.4731e-5

Location: 1.1441e-5

Error: 3.58e-2
Scale: 6.70e-5
Shape: 0.345

Error: 3.91e-2
Mean: -10.80

SD: 2.17

V. EVALUATION

A. Communication over Computation Overhead

We start by studying the communication overhead with
different number of nodes. We change the number of nodes
from 1 to 40 and measure the total execution time it takes
for the server nodes to perform pagerank graph computation.
We chose pagerank benchmark as a representative of graph

applications, because it has more inter-node communication
overhead. We recall that that the total execution time taken
by the application to perform the required computation on n
nodes can be expressed as:

Total execution time = S + P/n+On, (1)

where S is the sequential part of the program, P is the
parallelable part, and On is the communication overhead.



TABLE VII: The comparative time analysis of the maximum
number of concurrent flows for studied workloads.

Application Concurrent Flows
Data serving 71

approximate diameter 20
connected component 42
directed triangle count 54

format convert 18
kcore 75

pagerank 28
undirected triangle count 45

memcached 1
CoMD 40
MiniFE 10
HPCCG 5
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DataSet size:42.4MB (Actual data)

DataSet size:63.3MB (Actual data)

DataSet size:105MB (Actual data)

Dataset size:251MB (Actual data)

DataSet size:42.4MB (Curve Fitting)

DataSet size:63.3MB (Curve Fitting)

DataSet size:105MB (Curve Fitting)

Dataset size:251MB (Curve Fitting)

Fig. 4: Execution time versus the number of nodes for
pagerank using default server architecture (architecture 1 in
Table II).

There exists a trade-off between the degree of parallelism
(n) and the communication overhead (On) incurred due to
parallelism. As we increase n, the program runs more parallel
but on the other hand we experience more communication
overhead due to the required synchronization to merge the
processed data. Figure 4 plots the execution time versus the
number of nodes for the application under study (pagerank)
under different dataset sizes. It can be seen that, in general,
as we increase the size of the dataset, the performance keeps
increasing for larger number of nodes. However, the overhead
of communication is too much for small dataset sizes. For
dataset sizes less than 60MB, as we increase the number of
nodes, no performance improvement is achieved and there is no
point in increasing the scale-out degree. Further, increasing the
number of nodes (servers) from 1 to 2 degrades performance
as the impact of the overhead is typically more pronounced
with the small number of nodes. Using non-linear regression
methods, the communication overhead in Equation 1 can be
modeled as follows:

On = (α1 + α2/n) ∗ log(n). (2)

where α1 represents the coefficient of the communication
overhead of the sequential part (when one server forks the tasks
for the other parallel servers), and α2 represents the coefficient
of the communication overhead of the parallel part (when
parallel servers want to join the processed data in one place).
It is known that the implementation of the program has a log-
arithmic overhead [38]. Therefore, Equation 2 can accurately
predict the execution time with respect to the datasize and the
degree of parallelism. For small dataset sizes, the value of α1 is
very close to zero and increases as we increase the dataset size.
In addition, it is observed that, running the same dataset size
on very large number of nodes increases the communication
overhead such that beyond a certain point, parallelism level
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Fig. 5: Performance improvement of three different configu-
rations with respect to the baseline.
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Fig. 6: Normalized execution time of three different network
configurations with respect to the baseline.

saturates and the communication overhead keeps increasing.
Figure 4 plots the result of curve fitting and predicted tail
(using dashed lines) using this model for pagerank and for
different data sizes. The experiments in this figure show that,
when doubling the dataset size, the overhead constant, α2,
increases by 178%; however, the parallel constant, P , in
Equation 1, only increases by 50%.
B. Performance Comparison of Different Architectures

To explore the impact of different node architectures, we
evaluated the performance of different applications using the
studied configurations, as was shown in Tables II and III,
respectively. Figure 5 shows the performance improvement that
each configuration gets with respect to the baseline system
for different applications. The performance improvement is
the average performance improvement for 10 different dataset
sizes. It is observed that pagerank, approximate diameter, di-
rected triangle count, undirected triangle count and connected
components are applications which are less cache sensitive
and get more performance improvement with more number of
cores per server. On the other hand, kcore, CoMD, MiniFE and
HPCCG are more cache and memory sensitive and increasing
the number of cores per server increases the contention for
memory bandwidth. Therefore, these benchmarks show less
performance improvement with more number of cores per
server.

Further, based on the results of experiments with different
network architectures, we can divide these applications into
network bandwidth-intensive and network latency-sensitive
categories. Figure 6 shows normalized execution time of the
applications with different network configurations with respect
to the baseline. It is observed that, MiniFE, HPCCG, approx-
imate diameter and connected components are applications
which are more sensitive to the network latency. On the
other hand, pagerank, directed triangle count and undirected
triangle count are bandwidth-intensive applications. Later, in
section V-D, we show that the applications can have different
performance/cost benefits in a scale-out or scale-up approach
based on how network sensitive they are.

C. Bandwidth Comparison between Scale-up and Scale-out

In this part, we quantify the effect of different node archi-
tectures on the bandwidth requirement of our workloads. In
particular, we target iso-core architectures, and compare the
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Fig. 7: Scale-up approach with two and three cores per node
versus scale-out approach.

scale-up and scale-out approaches. Figures 7(a-b) and 7(c-
d) show 4 cores and 6 cores in the scale-out and scale-up
configurations, respectively. Let us assume that a scale-up
node is equal to packing k cores in scale-out to construct a
k-core scale-up machine as shown in Figure 7. The virtual
links in this figure show the communication demand between
any two nodes in scale-out or scale-up configuration. In real
configurations, nodes are not connected in a fully connected
graphs, but the average bandwidth between two different nodes
does not change. Let S be the subset of links in the scale-
out approach which connects the two parts of the graph,
which are forming one vertical link in the scale-up approach.
Investigating the different scale-out and scale-up approach
with different number of nodes and different dataset sizes, we
observed that if we aggregate k nodes together the average
communication bandwidth between any two k-core machines
is approximately:

Avg BW in k-core scale up = k2∗ k2(
2k
2

) ∗Avg BW in scale-out (3)

In addition, the maximum bandwidth of each link in scale-up
approach can be computed as follows:

max(BWk-core scale-up) = max(

k∑
i=1,i∈S

BWlink #i in scale-out) (4)

Figure 7 plots virtual links between any two communicating
nodes in a scale-up approach which is k2 times more than each
link in the scale-out approach 3. Using the proposed analytical
approach, a designer can predict how much to increase the
average bandwidth of network when scaling up server nodes.
Since the maximum bandwidth in today’s datacenter switches
is 10Gbps, scaling up the servers at some point may lead the
network bandwidth be the bottleneck in the system. Figure 8
shows the average bandwidth usage of different links in scale-
out and scale-up approach for applications with east to west
traffic patterns. Our experiments also show that the web appli-
cations where a client sends request to servers, utilize the high
level switches, regardless of mapping of cores to nodes, since
there is very little communication among servers. However, in
Map-reduce benchmarks, the traffic volume between different
servers is very high; consequently, it would be better, if
possible, to use the servers in the same rack to avoid traffic to
be directed to high level switches.

3The formula is derived using the fact that the average communication of
each k-core machine should be approximately k2 times more than the scale-out
approach, however the total communication bandwidth is reduced by a factor
of k2(

2k
2

) which is the total number of outgoing links in scale-up approach over

the total number of outgoing links in the scale-out approach. For example in a
2-core scale-up approach in Figure 3, every 4 link construct one link between
two nodes in scale-up, and the total amount of off-chip communication is
reduced by 4/6 and in a 3-core scale-up approach every 9 links in the scale-
out construct one link in scale-up and the total off-chip communication is
reduced by 9/15.
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Fig. 8: Average bandwidth usage of different benchmarks for
scale-up and scale-out approach.
D. Performance Cost Analysis

In this section, we evaluate performance/cost analysis of
different applications in a scale-out and scale-up approach.
To estimate the cost for datacenter in scale-out and scale-up
approach, we assume a power usage effectiveness (PUE) of
1.7, and utility price of 0.07 dollar per kwh. As shown in
Figure 5, most of cloud computing workloads are CPU and
memory intensive. Thus, we assume CPU and memory price
to be the major contributor of capital costs and power cost to
be the major contributor of operating cost 4 [16, 39, 40].

Figure 9 shows the total cost of ownership for different
configurations with 192-cores in a scale-out or scale-up ap-
proach, using the offered cost of simulated AMD processors
from [26]. For each configuration in Figure 9, represents
the number of nodes, B refers to the total number of cores
inside a single node and C is the number of sockets for
each node. From total cost of ownership (TCO) perspective,
it is observed that 16×12-core dual socket servers has the
optimal TCO for the servers in a datacenter, but TCO does
not consider workload’s performance. Thus, we came up with
a better metric to include TCO and performance together.
Figure 10 shows speed up/cost with respect to one single
core machine for different applications for scale-out and scale-
up approaches. We assume iso-core, iso-cache capacity and
iso-memory configurations. As it is seen in the figure, graph
applications have little scalability and get better performance
in scale-up approach. In fact, scale-up approach has better
performance/cost for graph applications that needs to access
random bits of data frequently. These applications are network
bandwidth-intensive and the communication overhead of scale-
out is abandons any hope to get the same performance as in
the scale-up approach. But HPCCG as a bandwidth-intensive,
latency-sensitive, and memory-intensive workload performs
better in a scale-out approach. However, applications with
high locality benefit from a scale-out approach. The total
aggregated memory bandwidth of scale-out approach is higher
than the scale-up, so memory intensive applications get more
performance benefit from scale-out.

VI. POTENTIAL IMPLICATIONS

This paper studies the combined impact of node architecture
and cloud workloads on network traffic. Based on our exper-
imental results, one can reuse the results to analyze similar
studied workloads. For example, inter-arrival times and packet
size distribution can be used to regenerate the same traffic
pattern. In addition, inter-arrival times imply a large amount
of self-similarity. Based on our flow analysis, applications

4For example, for a 96 dual-core scale-out approach, assuming Mean Time
to Failure (MTTF) of three year (26280 hours), the total cost of ownership
is [95 + 26280× 0.07× 1.7× 65/1000]× 96 = $28634 where each dual
core machine’s CPU and memory cost is $95 [26] and maximum power usage
of each dual core machine is 65 watt [26]. The capital expense (CAPEX) of
such configuration is $9120 and the power cost (≈OPEX) is $19514.



TABLE VIII: Workload Classification.

Characteristics pgrnk fcvt udtc dtc kcore cc apxr dsrv mem CoMD MiniFE HPCCG
Network bandwidth-intensive high medium high high medium medium medium low low low low high
Network latency-sensitive low medium low medium medium high medium medium medium low high high
Memory-intensive low high low low high medium medium high high high high high
Required bisection bandwidth
(Concurrent flow)

medium medium high high high high medium high low high low low

Performance/TCO low
(scale-up)

low
(scale-out)

medium
(scale-up)

low
(scale-up)

low
(scale-out)

low
(scale-up)

medium
(scale-up)

medium
(scale-out)

medium
(scale-out)

high
(scale-out)

high
(scale-out)

high
(scale-out)

TABLE IX: Implications of the metrics of interest.

Metric graphlab (pagerank, directed triangle
count, undirected triangle count)

graphlab (approximate diameter,
connected components)

Mantevo (MiniFE, HPCCG,
CoMD)

cloudsuite (memcached, data
serving) graphlab (kcore)

Comm/Comp overhead high high low low
Inter-arrival times lognormal gev lognormal gev
Packet Size Distribution Bimodal distribution with more large

messages
Bimodal distribution with more
large messages

Bimodal distribution with more
large messages

multi modal distribution with
more smaller messages

Bandwidth Requirement large burst small duration flows large burst small duration flows large burst small duration flows Small burst long duration flows
Self Similarity high medium high low
Summary Network bandwidth-intensive with

better performance/cost for scale-up
Network latency sensitive with bet-
ter performance/cost for scale-up

Memory intensive with better per-
formance/cost for scale-out

Stable flows, long duration
small packets, with better per-
formance/cost for scale-out
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Fig. 9: Total cost of ownership for scale-out and scale-up
approaches for various server types (”A×B,C” means A times
B-core C-socket server).
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Fig. 10: Speed up per kilo dollar cost for scale-out (48 single
core machines) and scale-up (12 quad-core machines).

with high bandwidth demands and long-lived flows make the
network buffer queues to grow faster until the packets are
discarded. As a result, TCP congestion control is not fair
for applications with low bandwidth demand and short-term
flows. Our experimental results opens up the area of designing
better congestion control mechanism and buffer managements
for different classes of workloads. Based on our observations,
we classified the applications based on their bottleneck re-
sources in Table VIII. Based on the results, applications are
categorized into five different categories. It is observed that
for the same number of cores, scale-out and scale-up approach
can have completely different performance/cost metrics. The
results can be used for system administrator to get use of
heterogeneous designs for different applications. Table IX
shows the implication of each metric of interest we discussed
on each of the benchmarks we studied. The first class of
benchmarks is network-bandwidth intensive benchmarks with
better performance/cost for scale-up. The second class of
benchmarks is more sensitive to the routing delay. The third
class of benchmarks is memory-intensive applications, which
get more memory resources in the scale-out approach. The

2 4 6 8 10 12

x 10
7

0

1

2

3

4

5
x 10

6

Time (micro second)

B
W

 U
s
a

g
e
 (

b
p

s
)

 

 

(a) kcore

2 4 6 8

x 10
7

0

2

4

6

8

10

12
x 10

6

Time (micro second)

B
a

n
d

w
id

th
 (

b
p

s
)

(b) directed triangle count

Fig. 11: Short burst long duration flow in kcore and high burst
short duration flows in directed triangle count.

last class of benchmarks have long duration flows with low
burst, so these kind of traffics are more stable and are not
sensitive to routing delay of high delay switches and can
be routed through optical switches. In addition, we discussed
how much bandwidth demand is increased when scaling up
the server nodes and proposed an analytical model to predict
network bandwidth demands of k-core servers. The results
of this analysis can be used for network capacity planning.
Knowing the characteristics of traffic behavior in advance,
can enable one employ a hybrid network architecture, where
long lived flows can be routed through optical switches and
short duration flows use traditional electrical switches. Based
on our experimental study, we can divide the benchmarks in
our experimental suite into two groups of long-duration, low-
burst flows and short-duration, high-burst traffics. Figure 11
plots two different benchmarks with different flow duration
and bandwidth requirement. Figure 11a shows the bandwidth
usage of two different server nodes, which shows a long short
burst flow, that lives for the whole duration of running the
benchmark. Figure 11b shows the aggregated bandwidth usage
of all nodes during time, which shows short duration high burst
flows. Classifying the network traffic into these groups can
potentially help us in exploiting hybrid network architectures.
For instance, we can take advantage of both optical switching
and packet switching routers.

VII. RELATED WORK

There are recent works aimed at improving the perfor-
mance of datacenter networks to sustain huge amount of data
communication between servers and with outside world. For



example [13, 14] suggest to use commodity switches in a fat
tree topology for large-scale datacenters. However, managing
routing algorithms to utilize the available bandwidth in such
networks is very challenging and without a deep understanding
of traffic and workload characteristic it is not possible to design
a suitable routing algorithm for these kinds of networks.

While there are lots of works to improve the routing
algorithms and network topology of datacenters, there is only
few works to study the effect of node architecture on traffic
pattern of datacenters. Benson et al in [12] have studied traffic
behavior of 10 different datacenters using SNMP traces. The
packet size distribution of different datacenters in this study
follows a bimodal distribution, which is the same as what
we found for most Map-Reduce applications. However using
SNMP traces it is not possible to poll the switches very often
so this study does not look into fine grain traffic behavior
of different applications and does not study the effect node
architecture on traffic behavior of datacenter networks. Ersoz
et al [11] implemented a real 3-tier cluster-based datacenter,
and characterize the network traffic behaviour of the nodes.
They found that the distribution of inter-arrival times and
message sizes of the incoming requests, conform lognormal
distribution, and also Pareto distribution is probable for service
times of the requests. However, they haven’t studied inter-node
communications among different servers. Chodnekar et al [41]
characterize the network traffic behaviour of the interconnec-
tion network of a system when multiple parallel applications
are running in the system. They investigate the distribution of
message sizes and generation times as a common distribution
using SPASM simulator with a dynamic and static strategies.

VIII. CONCLUSION

In this study, we conducted a workload characterization of
wide range of modern cloud applications on a variety of node
and network architectures. The results from this study can
help us understand cost performance trade-offs in designing
datacenters. One of the findings of our simulation-based study
is that the inter-arrival times of packets follows a self-similar
distribution and increasing the number of nodes tends to
increase this self similarity. It is also shown that different
benchmarks have different performance/cost for scale-out and
scale-up approaches and changing hardware architecture, like
CPU core architecture and memory hierarchy of a node can
change the traffic pattern on the network and upgrading the
servers without changing the network infrastructure, may lead
the network to be the bottleneck in the system. We also
observed that, some of the benchmarks send a high duration
flow into the network, which makes them a suitable fit for hy-
brid datacenter networks where stable flows can pass through
optical switches, whereas low-duration flows can pass through
electrical switches. REFERENCES
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