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Abstract—Multi-dimensional spatial analysis of image pixels have 

not been much investigated for the steganalysis of the LSB 

Steganographic methods. Pixel distribution based steganalysis 

methods could be thwarted by intelligently compensating 

statistical characteristics of image pixels, as reported in several 

papers. Simple LSB replacement methods have been improved by 

introducing smarter LSB embedding approaches, e.g. LSB 

matching and LSB+ methods, but they are basically the same in 

the sense of the LSB alteration. A new analytical method to detect 

LSB stego images is proposed in this paper. Our approach is 

based on the relative locations of image pixels that are essentially 

changed in an LSB embedding system. Furthermore, we 

introduce some new statistical features including “local entropies 

sum” and “clouds min sum” to achieve a higher performance. 

Simulation results show that our proposed approach outperforms 

some well-known LSB steganalysis methods, in terms of detection 

accuracy and the embedding rate estimation. 

Keywords: LSB Embedding Steganalysis, Multidimensional 

Correlation, Local Entropies Sum, Clouds Min Sum, Embedding 

Rate Estimation. 

I.  INTRODUCTION 

Steganography conceals the presence of communication. 
Steganography methods, in which informative bits of the 
message are embedded into the least significant bits (LSBs) of 
the cover signal, are known as LSB embedding. Steganalysis 
typically consists of a set of processes that may eventually 
detect the existence of the secret message embedded in the 
cover signal. Many papers on the LSB steganalysis can be 
found in the literature, while a small fraction of them suggest a 
theoretical approach to the problem. Some of steganalysis 
methods are algorithm-specific that means the attacker is aware 
of the steganography method employed to generate the stego 
signal. Some other steganalysis methods, however, blindly 
detect the existence of the secret message without any prior 
knowledge about steganography method. 

LSB encoding steganalysis of color images [2] is a method, 
developed by Fridrich et al., to detect the LSB embedding in 
24-bit color images by using the raw quick pairs (RQP) 
algorithm that analyzes close pairs of colors created by the 
embedding process. In cases 30% of the number of pixels is 
greater than the number of image unique colors, the RQP 
method works quite well. The RQP just yields a hard (not soft) 
estimate of the embedding rate. Estimation of secret message 
length in the LSB steganography by using weighted stego (WS) 
method [1] has also been investigated that is an effective 
method based on an optimization procedure. Fridrich et al. 
[7,10] also proposed the Regular and Singular groups as RS 
method. This technique saves the frequencies of the variations 

of regular groups and singular groups in the image to get an 
estimate of the LSB embedding rate.  

Dumitrescu et al. [3] proposed a more straightforward 
approach to the LSB steganalysis that theoretically estimates 
the LSB embedding rate of a given stego image. This method is 
based on an especial statistical property of the sets of odd/even 
pixels. The LSB replacement changes this statistical 
characteristic and, accordingly, the difference value of the 
identity can quantify the message embedding rate. A new 
framework for steganalysis of the LSB embedding based on 
Closure of Sets [4] has been proposed which does not depend 
on the type of the cover signal or the embedding domain.  

Dumitrescu et al. [11,12] proposed sample pair analysis 
(SPA) as a technique to detect the LSB steganography. It can 
estimate the embedding ratio accurately, when the embedding 
rate is greater than 3%. Lu et al. [14] improved the SPA 
method for LSB embedding detection called least square 
method (LSM) that estimates the length of hidden message 
more accurately, as compared to the SPA and the RS methods, 
using the cardinality of some pre-defined subsets. A SVD 
(singular value decomposition) [6] based Steganalysis method 
is suggested in [5]. This method could fail in cases that some 
parts of the image are dark; the message could be embedded in 
the other symmetric side of the image without changing the 
singular values. This is because the SVD of the image does not 
represent the correlation of the neighboring pixels.  

Harmsen et al. [8] used histogram characteristic function 
(HCF) to develop an additive noise model based steganalysis of 
the LSB embedding in color images, but their algorithm almost 
failed in the case of grayscale images. Ker [9] extended the 
detection of LSB matching; a skilled variant of the LSB 
alteration that was undetectable by standard LSB steganalysis 
methods. An empirical matrix was used by Ker to boost the 
detection probability of the HCF technique [8]. The empirical 
matrix equal with the adjacency histogram improved the Ker's 
detection results. Also Ker proposed a general framework for 
detection and length estimation of hidden messages [13] using 
the combinatorial structure.  

In this paper, we introduce a new analytical method for the 
LSB steganalysis. Our steganalysis method uses the multi-
dimensional correlation between pixels of an image that 
analyzes correlative parts of the signal to detect the existence of 
the secret message hidden in the signal through the LSB 
embedding. This method also gives an estimate of the 
embedding rate. The simulation data confirm superiority of the 
new approach, as compared to a number of well-known 
steganalysis methods. 
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Figure 1.  Flowchart of the proposed steganalysis algorithm. 

The rest of the paper is structured as follows. In section II 
steganography model is developed and explained. Multi-
dimensional correlation steganalysis including sectioning, cross 
correlation, feature extraction and analysis are described in 
section III. Computational complexity analysis is presented in 
section IV and simulation results are shown and discussed in 
section V. The conclusions are drawn in section VI. 

II. LSB STEGANOGRAPHY MODELING 

The steganographic system modeling, as a mathematical 
function, is addressed in this section. The modeling is 
explained by means of matrix analysis, where the system is 
simply assumed to take a cover signal and a secret message as 
its inputs and generate the stego signal at its output. 

A.  I/O Domain Definitions 

It is assumed here that the inputs of the steganographic 
system are a grayscale image and a binary message. The cover 
signal (grayscale image) is typified by an m-row, n-column 
(m*n) matrix whose elements (pixels) are integer numbers 
between 0 and 255 for an 8-bit digital image. Such a cover 
image is shown in the spatial domain, as:  

                             
      

 

The secret message is a sequence of bits that are embedded 
into some pixels of the cover image. The message is shown as a 
vector of length k: 

             [   ]    
      

             

The output image, the stego signal, is also an m-row, n-
column (m*n) matrix whose entries are integer numbers 
between 0 and 255: 

                              
      

 

B. Steganography method 

Secure steganography methods use a shared key between 
transmitter and receiver. This secret key ordinarily addresses a 
pseudo-random number generator (PRNG) as seed. The output 
of the PRNG locates candidate pixels of the cover signal to 
embed the covert message bits. Specifically, a typical LSB 
steganography method randomly changes some LSBs of the 
cover image, based on a pseudo-randomized version of the 
secret message using a PRNG. To hide the secret message in 
the cover signal, PRNG selects some LSBs of cover signal, 
subject to the embedding capacity and the embedding strategy. 
The mathematical relation between stego, cover, message and 
PRNG could be defined as: 

                                  

III. MULTI-DIMENSIONAL CORRELATTION STEGANALYSIS 

The proposed approach to the LSB steganalysis is described 
in this section. Suspicious signal, supposed to be an image 
consisting of m*n pixels, can be viewed as a data matrix. Our 
new steganalysis algorithm, Multi-Dimensional Correlated 
Steganalysis (MDCS), uses some basic mathematical operators 
in algebra. The MDCS depends on the relative multi-
dimensional locations of image pixels.  

The proposed MDCS algorithm is run in spatial domain of 
2-d images, hence a stego image, whether or not processed in 
other time/frequency domains, has to be transformed into the 
spatial domain prior to the analysis. The MDCS method 
consists of image sectioning, multi-dimensional cross 
correlation computation, and feature extraction/analysis. 
Furthermore, some new statistical features including local 
entropies sum and clouds min sum are added to achieve a 
higher performance. Fig.1 shows the proposed algorithm 
schematically. 

A. Sectioning 

The inception of the MDCS algorithm is the sectioning 
stage. At the sectioning stage, the cover image is split into a 
number of slices. The sectioning stage makes it possible to 
reduce the order of computational complexity of the MDCS 
algorithm. As stated in the following section, larger slices 
result in a higher order of the complexity of MDCS. The 
sectioning stage does not necessarily overshadow the desired 
steganalysis performance, but obviously decreases the order of 
complexity and intelligent analysis of separated sections can 
help further. In this paper two major types of sectioning are 
proposed: Windowing and Clouding. 

1) Windowing 
The windowing procedure splits the whole cover image into 

two-dimensional sequences of non-overlapping windows or 2-d 
blocks, i.e. slices the image into rectangular matrices of the 
same size. 
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Figure 2.  Relative two-dimensional autocorrelation of cover C. 

2) Clouding 
Clouding adaptively chooses some parts of the signal, 

something like clouds of an image of the sky. The Cloud 
selection method could be based on the similarity of the x-most 
significant bits (x-MSBs) of cover matrix entries. Clouding of a 
nature picture selects the sections of sky, river, jungle, or an 
object whose x-MSBs are alike. Entropic analysis of an image 
could help the steganalyzer to acquire desired clouded data. It 
is to be noted that Clouds are typically not rectangular in our 
algorithm but the next step is to build a rectangular matrix to 
analyze. So, Clouds should be padded by a sufficient number 
of zero (neutral) pixels to be casted in a rectangular matrix. 
Clouding could be taken as an intelligent windowing 
procedure, because almost the same color parts of an image are 
selected and processed separately. Given by x-MSBs clouding, 
pixels of cover image are chosen such that x-MSBs of the 
selected color are the same.  

If we have 2
x
 Cloud types given by x-MSBs, there are 2

8-x
 

Rain types given by y-least significant bits (y-LSBs) where 
y=8-x. Rain types refer to the types of an exact x-MSBs color 
given by y-LSBs where y<=8-x. To implement the Cloud 
sectioning, the same x-MSBs pixels are divided into 2

x
 classes. 

The analysis process is class oriented, i.e., pixels of the same 
class are processed together, where applying the analysis 
procedure to pixels of different classes results in zero. 

If the conventional LSB embedding is used, y-LSBs must 
be set to 1-LSB (y=1). With the LSB Matching, we can set x-
LSBs to 2-LSBs or 1-LSB, because just the number of altered 
LSBs involved in the embedding is of our concern. Also the 
inequality of x+y<=8 must always be satisfied. To speed up the 
feature extraction algorithm in our implementation, clouding 
and the next step to clouding are combined in the main loop of 
the generated code of the algorithm 

B. Multi-Dimensional Cross-Correlation 

Following the sectioning stage, the sequence of 
blocks/clouds of the given image undergoes a multi-
dimensional cross-correlation process. For 2-d images, all 

terms are described for two-dimensional blocks/clouds, which 
are later generalized to multi-dimensional analysis by making a 
little effort. Multi-dimensional cross-correlation of two hyper-
blocks/clouds is defined below. 

Definition-1 (Relative Cross-Correlation): Assume that C1 and 
C2 are two 2-d block-wise/cloud-wise m*n covers, as given in 
(1). 2-d relative cross-correlation (CC) of C1 and C2 with 2-d 
shift                         is defined as: 

             ∑        
     

           

                             



where   stands for XOR operation. 

Defnition-2 (Relative Autocorrelation): If C2 in Definition-1 is 
the same as C1=C, relative autocorrelation of C with 2-d 
shift                          is defined as: 

                   

 ∑       
     

           

                            



As defined in (6), the same regions, depicted in fig.2, are 
bitwise xor-ed, and then summed up together. Similar to 2-d 
DFT (Discrete Fourier Transform), the 2-d interval of cross-
correlation (autocorrelation) must be:              
    , as the range of      . Consequently, the area of cross-
correlation is 2*2=4 times of the areas of the images. The 3-d 
view of relative autocorrelation of a sample Cloud-ed cover, 
subject to        plane, is like a mountain remembering the 3-d 
Gaussian distribution. 

Lemma 1: Assume that image I is a 2-d m*n image given by 
(1) and CCI is the autocorrelation function as stated in 
Definition-2. So, we have: 

                    

                       

                          


It can easily be shown that the above property is trivial. By 
checking all of intersection positions of the two images, it can 
be derived that (7) meets our needed characteristics. 

Lemma 2: If   is an incremental or decremental function, 
           cannot learn a Support Vector Machine (SVM) 
more than the         lonely. 

By applying any incremental or decremental function to the 
data, the n-tuple threshold as a distinguisher is not changed, 
because the order of the data with respect to their magnitude 
remains unchanged. So we can only take into account the real 
original information about the image and ignore redundant data 
to improve the performance of the analyzer. In the next lemma 
you can see the only needed region for MDCS is the ¼ region 
of the whole-size image. 

Corollary1: Due to Lemma-1 and Lemma-2, to calculate 2-d 
cross-correlation feature of an image, it is only sufficient to 

calculate 2-d cross-correlation of 2-d interval [  
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Figure 3.  CCPlus features of 6th, 7th, and 8th bit plane of a typical image from COREL database. 

Lemma 3: Assume that PRNSeq1 and PRNSeq2 are 
two binary pseudorandom number sequences, so we 
have: 

                                           
   

 




Also for a PRNSeq alone, we have: 

                               

              
   

 
 

Lemma 4: Assume that C is a 2-d cloud-wise correlated cover, 
i.e. 

                      
                                 



If                          as C, M, and S specified 
in equations (1), (2), and (3), statistically: 

                  
Corollary2: For a 2-d cloud-wise correlated cover, it could be 
deduced that if                         , statistically: 

∑          
 
 

 
 
 

 
 

           

∑         
 
 

 
 
 

 
 

           

 

So, the multi-dimensional cross correlation of a Cloud-ed 
image is a good statistical feature with relative 2-d location-
aware characteristic to distinguish innocent images from stego 
ones. 

C.  Feature Extraction/Analysis 

Inputs of the system could be of different sizes, thus first 
and second features of the feature vector is set to image 
dimensions, number of rows, and number of columns. Length 
and width of any 2-d image are maintained to help the 
steganalysis process. Discrimination of the stego images from 
the clean ones needs intrinsic features normally increased or 
decreased, subject to the embedding operation. Next, two 
statistical features are derived following the Clouding (7-
MSBs, 1-LSB) stage.  

The frequency sequence of (x-MSBs, y-LSB)-Clouded 

    image is    
      

       
      

            
       

      

that   
 
is related to  th cloud type of  th rain type. Note that 

always               and        . Frequency 
is the count of how many pixels. Therefore, the first statistical 
feature, called Local Entropies Sum (LES), is derived as: 

    ∑
∑   

     
   

   
    

      
     

    

   
 

where      is the Shannon’s entropy function [15]. LES feature 
increases, when the embedding rate is incremented gradually. 
LES means that when some random bits, e.g. the embedded 
bits, are added to an m*n cover, most of Clouds entropies 
increase and the outcome of the Clouds entropies reaches its 
limit of one. Consequently, the sum of local entropies of 
Clouds increases to reach one.  

Intuitively, y-LSBs rain types’ distribution of x-MSBs 
Clouds, by increasing the embedding rate, tends to uniform 
distribution, so LES of 1-LSB rain type’s distribution tends to 
reach one as entropy of the uniform binary distribution. 

The second statistical feature, known as Cloud Min Sum 
(CMS) is defined as:  

    ∑
       

      
     

   

    

   
 

For            , the two features LES and CMS are 
either incremental, subject to the embedding operation, or 
between zero and one. CMS probably increases by adding 
some random multi-bits (y-LSBs) to an m*n cover. Multi-bits 
(y-LSBs) frequencies reach to each other, when embedding rate 
is incremented gradually.  

If we use 1-LSB rain type, only zeros and ones of Clouds 
are analyzed and, by adding random bits to an m*n cover, the 
number of zeros and ones in each cloud will be nearly the 
same.  
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Figure 4.  ROC Curves of Clouded MDCS vs. some other methods for 5% 

embedding rate. 

 
Figure 5.  ROC Curves of Clouded MDCS for 5%, 10%, and 15% embedding 

rates. 

Consequently, the sum of Clouds’ minimum frequency bit 
(zero or one) per m*n increases to 0.5 or the sum of Clouds’ 
maximum frequency bit per m*n decreases to 0.5. Intuitively, 
y-LSBs rain types’ distribution of x-MSBs Clouds, by 
increasing the embedding rate, tends to uniform distribution, so 
CMS of 1-LSB rain type’s distribution is willing to reach 0.5, 
as median of the uniform binary distribution. 

The third incremental feature, as the main contributing 
feature, is multi-dimensional relative cross-correlation, as 
defined in Definition-1, is called CCMinus, as it measures the 
number of different pixels of an image (I) based on the cross-
correlation, as: 

        ∑         
(
 
 

 
 
 
)

           
 

Moreover, CCPlus feature similar to CCMinus feature 
could be extracted as a multi-dimensional relative cross-
correlation as defined in Definition-2, which measures the 
number of similar pixels of an image through cross-
correlations. The main property of CCMinus/CCPlus is the 
smooth quadratic characteristic curve. Two previous features 
(LES and CMS) are statistical but they cannot be compensated 
by some steganographic methods, because they take advantage 
of intrinsic characteristic of steganography to reach uniform 
distribution that cannot be avoided as secret message is 
assumed random. CCMinus or CCPlus take the intrinsic 
advantage of most natural images. Natural images are locally 
(here Cloud-ly) correlated and CCMinus traces the cross-
correlation of Clouds of an image quite well. 

As shown in Fig.3 (a,b,c), when more random bits are 
embedded into the image (I), CCPlus feature of the image (I) 
quadratically decreases. To estimate the rate of embedding, we 
also extracted the statistical features of other higher bit-planes 
(6

th
 and 7

th
) of the image (I) that remain by embedding 

operation. By comparing fig.3(a), fig.3(b), and fig.3(c), we 
could find the quadratic coefficient of CCPlus curve of 
innocent 8

th
 bit plane (LSB), and then the constant or free term 

of CCPlus curve of the LSB plane of the image (I) could be 
determined. This is because the full embedding rate point is a 
local minimum point that could always be attained. Therefore, 
by comparing free term with original term, an estimate of the 
embedding rate could be achieved.  

IV. COMPUTATIONAL COMPLEXITY 

The MDCS method could be run in multiple ways. The 
bottleneck of the MDCS is when it executes the cross-
correlation part. In our MATLAB simulation, we used 
MATLAB’s profiler to find the most complex part of the 
algorithm. The Stage B of section III consumes the most of the 
CPU clocks. The Clouded MDCS in worst case is of the same 
order of complexity, as compared to the Windowed MDCS, if 
the window and the cloud are of the same size.  

The main implementation parameters of the Clouded 
MDCS include:  l as cloud size (normally 512*512), s as 
number of samples (usually 100 samples), d as depth of 
correlation (normally               pixels) for an    -
pixel c-bit (usually true-bit or 24-bit) RGB image. The 
complexity of the MDCS algorithm (    ), based on (15), is 
then given as a linear function of the system parameters, as: 

              
that is independent of the cloud size. This simple relation also 
shows that the Clouded MDCS needs no sophisticated 
hardware to get implemented. As discussed in the next section, 
we have examined some other LSB steganalyzers whose 
computational complexity is an almost linear function of the 
image size, so are basically of the same order of the complexity 
as that of the MDCS. However, the main difference between 
the computational burdens essentially comes from the learning 
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pre-processing stage that could be omitted in our algorithm, in 
which the rate estimation could be realized merely based on the 
information extracted from the image without any prior 
information from the image database. 

V.  EXPERIMENTAL RESULTS 

We used COREL and NRCS commonly used databases of 
images to execute our simulation on Pentium IV Quad-Core 
2.8 GHz PC for two days using MATLAB. During the 
simulation period, more than ten thousands images were 
processed. Among ways explained in parts A, B, and C of 
section III, we select the approach of the highest performance 
to detect stego images. The steganography method, as defined 
in Sec. II.B, is LSB replacement. The Clouded MDCS 
algorithm with LES, CMS, CCMinus and CCPlus features 
found to be the best among the others with cloud size of 
512*512, depth size of 32*32, and sample rates of 0 to 40 for 
512*512-pixel 8-bit images to get results within a reasonable 
processing time.  

The features were set as features vector of a SVM classifier 
with multi-degree polynomial core with 10000 iterations of 
quadratic programming for convergence, and a half of images 
were used in the training stage. In the first experiment, a half of 
the data were given to the SVM for learning. The second half, 
including both the innocent images and stego images with 
embedding rates greater than 5% were used for the steganalysis 
test by the SVM. In the final stage, stego images with 
embedding rate of 10%, 15%, and 20% were also given to the 
SVM.  

Based on the simulation results, the Clouded MDCS 
outperformed the reference methods [1,10,11] tested and 
compared to our method in the experiments. We compared our 
approach to other works that were merely based on analytical 
approaches. Works such as those reported in [2-5] are limited 
to some conditions like colorful images or non-uniform images 
that cannot be extended to a wide range of images. In addition, 
we compared our method to some well-known, basic 
steganalysis methods, on which some new approaches were 
relied on. Results are illustrated in figures 4 and 5. 

Fig.4 depicts receiver operating characteristic (ROC) curves 
of the MDCS, WS [1], RS [1], and SPA [11] for 5% 
embedding rate. As shown, the Clouded MDCS algorithm 
achieves a better detection performance, as compared to the 
other schemes. Fig.5 illustrates the ROC curve of the Clouded 
MDCS for 15% (the inner), 10% (the middle), and 5% (the 
utter) embedding rates. Furthermore, we have examined our 
method on other LSB steganography methods, LSB Matching 
[16] and LSB+ [17]. The observations are almost alike, because 
the Clouded MDCS depends on the statistical features of LSBs, 
as shown earlier with CCPlus and CCMinus. The detection 
performance for both the conventional LSB replacement and 
the LSB Matching are almost the same. This is while the LSB+ 
method is detected even faster than the others, because it 
embeds more bits to resist some other steganalysis methods. 

VI. CONCLUSION 

The new multi-dimensional correlation steganalysis, called 
MDCS, has been proposed in this paper. Major stages of the 
proposed algorithm include sectioning, relative cross-

correlation, and feature extraction/analysis. The MDCS 
algorithm specifically uses new features for steganalysis, such 
as clouds min sum and local entropies sum. This algorithm also 
gives an estimate of the LSB embedding rate when applied to 
an stego image. The MDCS complexity is adjustable based on 
the tradeoff between the processing time and the steganalysis 
accuracy. Simulation results, based on our ROC curve analysis, 
have shown that the MDCS significantly improves over some 
well-known methods introduced earlier for steganalysis of the 
LSB steganography.  
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