
The Pennsylvania State University

The Graduate School

College of Engineering

FORK-JOIN QUEUE MODELING AND OPTIMAL SCHEDULING IN PARALLEL

PROGRAMMING FRAMEWORKS

A Thesis in

Computer Science and Engineering

by

Farshid Farhat

 2015 Farshid Farhat

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

2015

1

ABSTRACT

MapReduce framework is widely used to parallelize batch jobs since it exploits a high

degree of multi-tasking to process them. However, it has been observed that when the number of

servers increases, the map phase can take much longer than expected. This thesis analytically shows

that the stochastic behavior of the servers has a negative effect on the completion time of a

MapReduce job, and continuously increasing the number of servers without accurate scheduling

can degrade the overall performance. We analytically model the map phase in terms of hardware,

system, and application parameters to capture the effects of stragglers on the performance. Mean

sojourn time (MST), the time needed to sync the completed tasks at a reducer, is introduced as a

performance metric and mathematically formulated. Following that, we stochastically investigate

the optimal task scheduling which leads to an equilibrium property in a datacenter with different

types of servers. Our experimental results show the performance of the different types of schedulers

targeting MapReduce applications. We also show that, in the case of mixed deterministic and

stochastic schedulers, there is an optimal scheduler that can always achieve the lowest MST.

KEYWORDS: Stochastic processes, Computational model, Delayed Tailed Distribution, Optimal

scheduling, Cloud computing, Synchronization, Queuing Theory, MapReduce, Stochastic

Modeling, Performance Evaluation, Fork-Join Queue.

2

TABLE OF CONTENTS

List of Figures .. v

List of Tables ... vi

Acknowledgements .. vii

 Introduction ... 6

 Preliminaries.. 8

2-1 MapReduce Framework ... 9
2-2 Delayed Tailed Distribution ... 11
2-3 Problem Definition ... 12

 Modeling of Stragglers .. 15

3-1 Server as a Single Queue .. 15
3-2 Delayed Tailed Completion Time of Tasks ... 16

 Formulation of Stragglers .. 18

4-1 Mean Sojourn Time at a Reducer ... 18
4-2 Asymptotic Delayed Tailed Completion Time .. 20
4-3 MST Variation in DTD Model ... 22

 Potential Uses of the Model .. 24

 Optimal Job Scheduling for Stragglers ... 27

6-1 Fair Job Scheduler .. 27
6-2 Pure-Deterministic Scheduler .. 30
6-3 Pure-Stochastic Scheduler .. 33
6-4 More Advanced Schedulers ... 36

 Optimal Number of Mappers .. 43

 Related Work... 47

 Concluding Remarks ... 49

References .. 50

Appendix The proofs of the lemmas ... 55

3

LIST OF FIGURES

Figure 2-1. MapReduce framework. .. 10

Figure 2-2. (a) CDF and (b) PDF of a DTD. .. 12

Figure 4-1. The MST with respect to (a) the total arrival rate and (b) the number of mapper

nodes. ... 23

Figure 6-1. The MST with respect to the total arrival rate and the number of mapper nodes

for the fair job scheduler. ... 29

Figure 6-2. The MST of heterogeneous nodes with the fair job scheduler. 29

Figure 6-3. The MST with respect to the arrival rate and the number of mapper nodes for

a pure-deterministic scheduler. .. 32

Figure 6-4. The MST of heterogeneous nodes with the pure-deterministic scheduler. 33

Figure 6-5. The MST with respect to the arrival rate and the number of mapper nodes for

a pure-stochastic scheduler. ... 35

Figure 6-6. The MST of heterogeneous nodes with the pure-stochastic scheduler. 35

Figure 6-7. The MST comparison between fair job scheduler, pure-deterministic scheduler,

and pure-stochastic scheduler. ... 36

Figure 7-1. The comparison of the optimal number of the heterogeneous mapper nodes

based on the MST with 𝑫 = 𝟑. 𝟓. .. 45

Figure 7-2. The stack ratio of LP servers to HP servers with respect to Budget in high

traffic. ... 46

Figure 7-3. The stack ratio of LP servers to HP servers with respect to Budget in medium

traffic. ... 46

Figure 7-4. The stack ratio of LP servers to HP servers with respect to Budget in low traffic.

 .. 46

4

LIST OF TABLES

Table 2-1. Notation Used in Our Formulation. .. 14

Table 3-1. Rates used in the published data. .. 17

Table 3-2. Parameter values used in experiments. ... 17

Table 5-1. Summary of the lemmas. .. 26

5

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Anand Sivasubramaniam, whose

understanding, and patience, added considerably to my graduate experience. I would like to thank

the other members of my committee, Dr. Chita R. Das and Dr. Mahmut Kandemir for the assistance

they provided at all levels of the research project.

I would also like to thank my family for the support they provided me through my entire

life and in particular, I must acknowledge my wife and best friend, Diman, without whose love,

encouragement and editing assistance, I would not have finished this thesis.

In conclusion, I recognize that this research would not have been possible without the

financial assistance of the Pennsylvania State University, the Department of Computer Science and

Engineering, and express my gratitude to them.

6

Introduction

Map-Reduce has become a popular paradigm for structuring large scale parallel computations in

datacenters. By decomposing a given computation into (one or more) Map and Reduce phases, the

work within each phase can be accomplished in parallel without worrying about data dependencies,

and it is only at the boundaries between these phases where one needs to worry about issues such

as data availability and dependency enforcement. At the same time, with the possibility of

elastically creating tasks of different sizes within each phase, these computations can adjust

themselves to the dynamic capacities available in the datacenter. There has been a lot of prior work

in the past decade to leverage this paradigm for different applications [1,2,3], as well as in the

systems substrate needed to efficiently support their execution at runtime [4,5,6].

While each phase is highly parallel, the inefficiencies in MapReduce execution manifest at

the boundaries between the phases as data exchanges and synchronization stalls, which ensure

completion of the prior phases. One of these inefficiencies is commonly referred to as the straggler

problem of mappers, where a reduce phase has to wait until all mappers have completed their work

[4]. Even if there is one such straggler, the entire computation is consequently slowed down. Prior

work [7,8,9,10] has identified several reasons for such stragglers including load imbalance,

scheduling inefficiencies, data locality, communication overheads, etc. There have also been efforts

looking to address one or more of these concerns to mitigate the straggler problem [7,8,11,12,13].

While all these prior efforts are important, and useful to address this problem, we believe that a

rigorous set of analytical tools is needed in order to: (i) understand the consequences of stragglers

on the performance slowdown in MapReduce execution; (ii) be able to quantify this slowdown as

a function of different hardware (processing speed, communication band-width, etc.), system

(scheduling policy, task to node assignment, data distribution, etc.), and application (data size,

7

computation needs, etc.) parameters; (iii) study the impact of different scaling strategies (number

of processing nodes, the computation to communication and data bandwidths, tasks per node, etc.)

on this slow-down; (iv) undertake “what-if” studies for different alternatives (alternate scheduling

policies, task assignments to nodes, etc.) beyond what is available to experiment with on the actual

platform/system; and (v) use such capabilities for a wide range of optimizations: they could include

determining resources (nodes, their memory capacities, etc.) to provision for the MapReduce jobs,

the number of tasks to create and even adjust dynamically, the assignment of these tasks to different

kinds of nodes (since datacenters could have heterogeneous servers available at a given time),

adjusting the scheduling policies, running redundant versions of the tasks based on the trade-offs

between estimated wait times and additional resources mandated, executing a MapReduce

computation under a budgetary (performance, power, cost) constraint, etc.

To our knowledge, there are no rigorous stochastic analysis tools available today with these

capabilities for modeling and understanding the straggler problem in MapReduce for the purposes

listed above. This thesis intends to fill this critical gap by presenting an analytical model and

optimization framework for capturing the waiting time at the end of the Map phase due to any

stragglers. We also demonstrate the benefits of having such a tool with a few case studies.

Specifically, this thesis makes the following contributions towards presenting and exploiting an

analytical model for the stragglers in MapReduce computations:

• We demonstrate that our delayed tailed distribution can be used to capture the

service time of the tasks at a given node. We then show that, with such service

times, the aggregate completion time of the tasks across all the nodes of the cluster

also follows our delayed tailed distribution. This is shown against a spectrum of

stragglers’ completion times of 10 production workloads studied in prior re-search.

• With this result, we develop a closed-form queuing model of the time expended

before a reducer node can begin its part of the computation, i.e., the time for all

8

mappers to finish, referred to as Mean Sojourn Time (MST). Parameterized by the

task inter-arrival times to the mappers, the delayed tailed service times, and the

number of mappers, this model helps us conveniently study the impact of different

parameters--whether job characteristics, hardware capabilities or system

configuration--on the delays before a reducer can start.

• This model can be used for a variety of purposes as explained above. In this work,

we specifically illustrate two use cases. First, we show how the model can be used

to schedule tasks on different (possibly heterogeneous) nodes of a datacenter to

reduce the MST. This is demonstrated on the average to be 129% more effective

than the JobTracker scheduling of the current Hadoop distribution [5], and 51%

better than ideal deterministic approaches.

• We show that increasing the number of nodes as-signed to the tasks is not always

helpful, since the variance of completion times can increase the total completion

time. There are a critical number of nodes that should be assigned to a job, and we

illustrate how our model can be used to determine it with respect to the service

times of the nodes and the computational complexity of the job.

Preliminaries

In this chapter, some preliminaries are explained. In the first section, MapReduce framework as a

programming framework to handle big data computation is described briefly. The next section is

dedicated to our new definition of the completion times distribution highly used in the thesis.

9

2-1 MapReduce Framework

The MapReduce framework [4] is a programming paradigm that can be used to execute data-

intensive jobs. This framework can be applied to a large class of algorithms, known as MapReduce

Class (MRC) [14], with high levels of parallelism. One of MapReduce implementation is the open-

source Hadoop/MapReduce framework [47] as a scalable implementation built upon fault-tolerant

Hadoop file system (HDFS) [5].

Figure 2-1 shows a high-level view of the MapReduce framework. A job arrives with mean

rate λ, and is partitioned into ‘map’ tasks. More specifically, the JobTracker module in Hadoop

assigns map/reduce tasks to Task-Tracker nodes. Each map task tracker node (mapper) has threads

to perform the map tasks. Once the map tasks are completed, a set of intermediate key/value pairs

is generated and passed to the associated reducer node in the shuffling stage. In fact, each reducer

node may receive values with the same intermediate key assigned to that node. Each mapper node

employs reducers to compute and merge the received intermediate values. After the reduce phase,

the final values are merged into the HDFS-based storage.

10

Reducer1

Lo
ad

 D
at

a
Lo

ad
 f

ro
m

 D
is

k
to

 M
e

m
o

ry

M
ap

Lo
ca

l S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

M
e

rg
e

Lo
ad

 f
ro

m
 D

is
k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

StorageStorage

Mapper1 (µ1)

Shuffle

Split

λ1

Join

.

.

.
λNm

.

.

.
.
.
.

.

.

.

λ2λ

Lo
ad

 D
at

a
Lo

ad
 f

ro
m

 D
is

k
to

 M
e

m
o

ry

M
ap

Lo
ca

l S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

Mapper2 (µ2)
Lo

ad
 D

at
a

Lo
ad

 f
ro

m
 D

is
k

to
 M

e
m

o
ry

M
ap

Lo
ca

l S
o

rt
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

MapperNm (µNm)

Reducer2

M
e

rg
e

Lo
ad

 f
ro

m
 D

is
k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

ReducerNr

M
e

rg
e

Lo
ad

 f
ro

m
 D

is
k

to
 M

e
m

o
ry

R
e

d
u

ce
C

o
m

b
in

e
 &

W

ri
te

 o
n

 D
is

k

λ1,1

λ1,2

λ1,Nr

λ2,1

λ2,Nr

λ2,2

λNm,1

λNm,2

λNm,Nr

.

.

.

.

.

.

.

.

.

Figure 2-1. MapReduce framework.

For example, in a word-count application (where the goal is finding the frequency of the

words in a huge document), a mapper may count the frequency of each word in its received text in

the map phase, and then send (word, frequency) tuples for assigned reducers in the shuffling phase.

It may send words that begin with letter ‘A’ to the first reducer, words that begin with letters ‘B, C

or D’ (having balanced number of words for each) to the second reducer, etc. It is important to note

that the map and shuffle phases may overlap. Each reducer calculates the total frequency of its

words by summing the corresponding frequencies of each word in reduce phase.

For a reducer to start its execution, all mappers that have data to send to that reducer should

finish sending. During execution, one may observe various imbalances across mappers, due to

resource contention, unbalanced tasks scheduled on mapper nodes, or heterogeneity across

computational resources [8]. Clearly, the start time of a reduce job is dictated by the slowest mapper

11

node, that is, the slowest mapper node determines how soon a reduce task can start its execution.

One of the major reasons for excessively long execution latencies of MapReduce jobs is stragglers,

i.e., some servers that complete their assigned tasks in a longer time than usual.

2-2 Delayed Tailed Distribution

We start by giving the definition of our Delayed Tailed Distribution (DTD) since it is highly used

in our model.

Definition 1: Given random variable 𝑋 with rate 𝜆 and offset time 𝑇, 𝐹𝑋(𝑥) and 𝑓𝑋(𝑥), respectively

the cumulative distribution function (CDF) and the probability density function (PDF) of delayed

tailed distribution, can be defined as follows:

𝐹𝑋(𝑥) = {
0 ; 𝑥 < 𝑇

1 − 𝑒−𝛬(𝑥−𝑇); 𝑥 ≥ 𝑇
= (1 − 𝑒−𝛬(𝑥−𝑇))𝑈(𝑥 − 𝑇) (1)

𝑓𝑋(𝑥) = {
0 ; 𝑥 < 𝑇

𝛬′(𝑥 − 𝑇)𝑒−𝛬(𝑥−𝑇); 𝑥 ≥ 𝑇
, (2)

where 𝑈(𝑥) is unit step function, 𝛬(𝑥) = 𝑎𝑥 + 𝑏 𝑙𝑛(𝑥 + 1) is a monotonically increasing rate

function from zero for 𝑎, 𝑏 ≥ 0 (i.e., Λ(𝑥) = 0; 𝑥 ≤ 0 and Λ′(𝑥) ≥ 0; 𝑥 ≥ 0), and rate 𝜆 is the

reciprocal of the mean of the distribution (i.e. 𝜆−1 = ∫ 𝑒−Λ(𝑥)𝑑𝑥
∞

0
).

Figure 2-2 (a) and Figure 2-2 (b) plot CDF and PDF of a DTD respectively, where an

exponential distribution is obtained by a linear rate function such as Λ(𝑥) = 0.01x, and by a

logarithmic rate function Λ(𝑥) = 0.01 log(𝑥 + 1), a Pareto, heavy-tailed or power-law distribution

can be obtained. Generally 𝑓𝑋(𝑥) can capture any generalized Pareto distribution. An important

observation is that the completion times of the tasks exhibit a heavy-tailed distribution [8,9,10].

We show in this work that DTD completion time is nearly coincident with empirical data derived

from prior work.

12

As illustrated in Figure 2-2 (b), most servers finish their tasks right after a threshold, but a

fraction of servers finish their tasks only after a longer time. Since reducers can start only after

completion of all their related map tasks, they will be delayed because of these delayed servers.

Note that the intrinsic properties of architecture-level heterogeneity (e.g., big core versus small

core) can further magnify the impact of stragglers. In this thesis, we analytically model stragglers

and show their effect on completion time. We also optimize the delay using the schedulers

depending on task mapping and the number of servers.

(a)

(b)

Figure 2-2. (a) CDF and (b) PDF of a DTD.

2-3 Problem Definition

The response time in the critical path of a MapReduce job includes the delays in storage, network

communications, map-task computation, synchronization of the map tasks, reduce-task

computation, and aggregation of the reduce tasks. While most of these delays are known

deterministic, the delay from map task scheduling (mapping) to synchronization at a reducer is

known as a stochastic phenomenon. Heterogeneity in cluster resources makes the synchronization

delay of the tasks higher. In fact, the problem of uneven task completion times has been shown to

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

D
e
la

y
e
d
 E

x
p
o
n
e
n
ti
a
l
D

is
tr

ib
u
ti
o
n
 (

C
D

F
)

T = 100, Lambda = 0.01

0 200 400 600 800 1000
0

0.002

0.004

0.006

0.008

0.01

Time

D
e
la

y
e
d
 E

x
p
o
n
e
n
ti
a
l
D

is
tr

ib
u
ti
o
n
 (

P
D

F
)

T = 100, Lambda = 0.01

13

be a serious impediment to the scalability of MapReduce computations [8,11,19]. While this has

been studied experimentally, it has not been investigated from a stochastic perspective. So we want

to minimize this synchronization delay by scheduling the coming job among heterogeneous

mappers with stochastic completion times.

A MapReduce job (e.g., word count) can be seen as a set of tasks that must be completed

to obtain the desired result (e.g., the frequency of each word). In our problem, the jobs are submitted

to the system with the mean arrival rate 𝜆, which can be interpreted as the average number of CPU

instructions coming to the system per second. As shown in Figure 2-1, a job with arrival rate 𝜆

comes to the MapReduce framework, and can be divided into a set of map tasks with arrival rates

of 𝜆1, 𝜆2, … 𝜆𝑁𝑚
, where 𝑁𝑚 mapper nodes are involved.

If the job is split into 𝐾 map tasks, the mapper nodes receive their map tasks proportionally

with the ratios 𝑝1, 𝑝2, ... 𝑝𝑁𝑚
 determined by the scheduler. Consequently, 𝑝𝑖𝐾 map tasks are sent

to the 𝑖𝑡ℎ mapper node. In other words, the mean value of the task arrival rate to the 𝑖𝑡ℎ mapper

node is 𝜆𝑖 = 𝑝𝑖𝜆 where 𝜆 = ∑ 𝜆𝑖
𝑁𝑚
𝑖=1 . In addition to the skewness of map tasks captured by 𝜆𝑖, the

heterogeneity of the mean service rates of the mapper nodes is captured by 𝜇𝑖 (instructions per

second).

Stragglers problem captures the skewness of the completion times of the stragglers for a

single job. In other words, the completion times of all tasks for a single job have a long-tailed or

more generally delayed tailed distribution denoted in Eq. (1,2). We are interested to model and

formulate this problem as a stochastic scheme, and then we want to find the optimal scheduling or

task arrival rates (𝜆𝑖 ∀𝑖 in Figure 2-1) to mappers as well as the optimal number of mappers (𝑁𝑚)

to minimize the completion time of all map tasks, where 𝜆 = ∑ 𝜆𝑖
𝑁𝑚
𝑖=1 and the service rates (𝜇𝑖 ∀𝑖)

and completion time of the mappers are heterogeneous following our verified delayed tailed

distribution. The notations used in this thesis are listed in Table 1.

14

Throughout the thesis, the stochastic behavior of the 𝑖𝑡ℎ mapper node with its

communication links is modeled as a single queue with a mean service rate (𝜇𝑖). The completion

time of each mapper node is independent of the other mapper nodes, but the completion time of a

map task may be dependent on the completion time of the other map tasks that reside in the same

mapper node. Furthermore, the deterministic delay of mapper node computation and its

communication links are captured by an offset time. Small stochastic variances across

communication link delays add a nearly-deterministic delay overhead on all end-to-end paths,

because orchestrated traffic from mappers to reducers is nearly-deterministic, and the shuffling

phase overlaps with the map phase of MapReduce. Also prior studies [16,23] show task mapping

from mappers to reducers via pipelining or multi-level hash-based mechanism can be balanced.

Thus, the difference across the deterministic delays of the paths from mappers to a reducer is

negligible without loss of generality, and straggling reducers problem is a deterministic problem.

Table 2-1. Notation Used in Our Formulation.

Parameter Sign Explanation

Number of mapper nodes 𝑁𝑚 The number of nodes in the datacenter assigned for

map tasks

Mean inter-arrival time of ith

mapper

1/𝜆𝑖 The average time between the arrivals of tasks coming

to ith mapper

Mean service time of ith

mapper

1/𝜇𝑖 The average servicing and routing time of the tasks by

ith mapper

Mean job inter-arrival time 1/𝜆
𝜆 = ∑ 𝜆𝑖

𝑁𝑚

𝑖=1
= ∑ 𝑝𝑖𝜆

𝑁𝑚

𝑖=1
= 𝑝𝑖 𝜆𝑖

−1

Unit step function 𝑈(𝑡) 𝑈(𝑡) = {
1
0

; 𝑡 ≥ 0
; 𝑡 < 0

Dirac delta function 𝛿(𝑡) 𝛿(𝑡) = 𝑑𝑈(𝑡)/𝑑𝑡

Offset of DTD for ith mapper 𝑇𝑖 The minimum amount of time required to complete a

task

Completion time of all map

tasks
𝑅𝑀 The required time to finish all map tasks by all mappers

Completion time of ith mapper 𝑅𝑀𝑖 The required time to finish a task by ith mapper

Mean Completion rate of ith

mapper

𝛾𝑖 The average required time to finish a task by ith

mapper

15

Modeling of Stragglers

We showed the mean arrival rate of the job (𝜆) could capture the computational overhead of the

MapReduce job, and the task arrival rates (𝜆𝑖) could capture the task scheduling or the amount of

data chunks mapped to the servers. Also these task arrival rates (𝜆𝑖) can capture the skewness of

the data computation across the servers. Now, we describe the server model as a single queue with

mean service rate 𝜇𝑖 (instructions per second), and we justify this model can be captured by our

delayed tailed distribution, and then we validate the model by using the maximum likelihood

method [49] for 10 MapReduce workloads.

3-1 Server as a Single Queue

The completion time of all map tasks is a function of the inter-arrival times of tasks and the service

times of the servers. In our model, we investigate the DTD service time. Later, we validate the

model using DTD for real workloads. Also we study different distributions for task inter-arrival

times and service times. Note that we are not restricted to a simple queue; we investigate the other

inter-arrival times and service times that correspond to other potential scenarios in modern

datacenters [27] as a general form of job inter-arrival time.

A server can be modeled as a FIFO infinite-buffer single queue with a DTD service time.

Because CPU clock rate of a server has a periodic characteristic and is proportional to the mean

service rate 𝜇𝑖 as a linear coefficient (say 𝐶), i.e., sequential instructions can be executed

successively with a time difference not less than 𝑡𝑖 ∝ 1/(𝜇𝑖𝐶), and other instructions that involve

memory or I/O requests can have an even longer time difference from the previous instruction.

Consequently, the distribution of CPU clock rate is 𝛿(𝑡 − 𝑡𝑖) (the Dirac Delta function as 𝛿(𝑡) =

16

𝑑𝑈(𝑡)/𝑑𝑡). The distribution of the service time of the instructions is known as an exponential

distribution by many prior studies [28,29,30]. The distribution of the combination of these two

random variables is equivalent to the convolution (∗) of these two distributions. The resulting

service time distribution of a server is thus a DTD where its PDF can be expressed as:

𝜇𝑖𝑒−𝜇𝑖(𝑡)𝑈(𝑡) ∗𝑐𝑜𝑛𝑣 𝛿(𝑡 − 𝑡𝑖) = 𝜇𝑖𝑒−𝜇𝑖(𝑡−𝑡𝑖)𝑈(𝑡 − 𝑡𝑖) (3)

where 𝑡𝑖 is the minimum time required to process a CPU instruction. Each task contains a number

of sequential instructions (say 𝐼), each having a minimum time to execute and route to a reducer.

Therefore, the total service time of a server is not less than 𝑇𝑖 = ∑ 𝑡𝑗
𝐼
𝑗=1 giving the offset of a DTD

in the service times, and capturing the deterministic part of computation delay.

Note that the different servers can have different mean service rates (𝜇𝑖) and offset times

𝑇𝑖 which can make a datacenter heterogeneous, and in designing a scheduler for a heterogeneous

datacenter, we only need these parameters (𝜇𝑖 and 𝑇𝑖). As a result, the DTD service time is a

generalization of the exponential and Pareto service time and we will show that it matches with real

data.

3-2 Delayed Tailed Completion Time of Tasks

The completion time of the tasks is the waiting time in the buffer (queue) plus the time required to

service them. Our defined DTD completion time denoted in Eq. (1,2) for all map tasks coming to

a reducer matches with the empirical completion times of map tasks that have been published in

prior studies [8,9,10]. We use the completion times of different MapReduce applications (in Table

2) as a reference, and then we try to fit the data on a CDF of a DTD represented by Eq. (1,2) as

follows:

(1 − 𝑒−Δ𝑖(𝑡−𝑇𝑖))𝑈(𝑡 − 𝑇𝑖).

17

Table 3-1. Rates used in the published data.

 Benchmark Ref. Rate Mean Squared Error

Bing Search Engine [8] 1.5196 0.0465

Facebook [10] 1.6715 0.0345

Cloudera Customer (a) [10] 1.7122 0.0328

Cloudera Customer (b) [10] 1.7868 0.0273

Cloudera Customer (c) [10] 1.6491 0.0334

Cloudera Customer (d) [10] 1.7123 0.0345

Cloudera Customer (e) [10] 1.7671 0.0266

OpenCloud [9] 1.6862 0.0352

M45 [9] 1.7162 0.0361

WebMining [9] 1.7805 0.0360

The maximum likelihood estimate of rate function has been described in appendix of [49].

Note that the offset time 𝑇𝑖 (constant for an application) can be directly taken from the empirical

data, and it is only the rate function (Δ𝑖) believed [20,39,40,41] to be a logarithmic function

resembling a heavy-tailed distribution. The mean squared error is not greater than 5% across all

those workloads as shown in Table 2, strengthening our rationale for modeling completion times

as a DTD. Accordingly, Table 3 lists important parameters and their values used in our subsequent

analysis and simulations. These values are extracted from the prior studies data listed in Table 2 by

means of quantitative methods discussed in chapter 3 of [45].

Table 3-2. Parameter values used in experiments.

Parameter Range

Mean inter-arrival time 0.1s-2s

Mean service time 0.5s-2s

Offset time 0.1s-100s

Mean Completion time 0.5s-1000s

Utilization 0.1-0.95

18

Formulation of Stragglers

We define a new performance metric known as Mean Sojourn Time (MST), and express it as a

closed-form formula in terms of the completion time distributions of the map tasks which are

dependent on task inter-arrival rates and service rates. Then by lemmas 1 and 2, we analytically

proved that the distribution of sojourn time at a reducer asymptotically follows DTD. Also the

closed-form MST for a special case has been derived in Lemma 3.

4-1 Mean Sojourn Time at a Reducer

Mean sojourn time at a reducer represents the average time required to synchronize all completed

map tasks before a reducer can start its execution. MST can be a reasonable metric to represent the

mean delay from job split to merge in a reducer as a fork-join queue for the first part of the end-to-

end delay of a MapReduce job.

Definition 2 (Mean Sojourn Time): Given general CDFs of independent and identically

distributed (i.i.d) completion times of map tasks as 𝐹𝑅𝑀𝑖
(𝑡) = 𝑃(𝑅𝑀𝑖

≤ 𝑡); 𝑖 = 1 … 𝑁𝑚, by using

maximum order statistics (MOS), the required time for synchronization of all completed map tasks

at 𝑖𝑡ℎ reducer (𝑆𝑅𝑖
) is the maximum of the completion times of all map tasks, i.e., we can express

𝑆𝑅𝑖
= 𝑚𝑎𝑥(𝑅𝑀1

, 𝑅𝑀2
, … , 𝑅𝑀𝑁𝑚

) as:

𝐹𝑆𝑅𝑖
(𝑡) = 𝑃(𝑆𝑅𝑖

≤ 𝑡) = ∏ 𝑃(𝑅𝑀𝑖
≤ 𝑡)

𝑁𝑚

𝑖=1
= ∏ 𝐹𝑅𝑀𝑖

(𝑡)
𝑁𝑚

𝑖=1
. (4)

The corresponding PDF can be expressed as follows:

19

𝑓𝑆𝑅𝑖
(𝑡) =

𝜕

𝜕𝑡
𝐹𝑆𝑅𝑖

(𝑡) = 𝐹𝑆𝑅𝑖
(𝑡) ∑

𝑓𝑅𝑀𝑗
(𝑡)

𝐹𝑅𝑀𝑗
(𝑡)

𝑁𝑚

𝑗=1
. (5)

Eq. (6)-(8) given below are used in our formulation to be presented shortly. The mean

sojourn time by using the inclusion–exclusion principle [31] can be expressed with respect to the

expected-value of the minimum of completion times of every subset of map tasks as:

𝑀𝑆𝑇 = 𝐸{𝑆𝑅𝑖
} = 𝐸 {𝑚𝑎𝑥 (𝑅𝑀1

, 𝑅𝑀2
, … , 𝑅𝑀𝑁𝑚

)}

= ∑ {(−1)𝑖+1 ∑ 𝐸 {𝑚𝑖𝑛 (𝑅𝑀𝑗1
, 𝑅𝑀𝑗2

, … , 𝑅𝑀𝑗𝑖
)}

∀{𝑗1,𝑗2,…,𝑗𝑖}⊂{1,2,…,𝑁𝑚}

}
𝑁𝑚

𝑖=1
.

(6)

Furthermore, MST can be expressed in another way, with respect to the distribution of completion

time of each server using Eq. (5) as:

𝑀𝑆𝑇 = ∫ 𝑡𝑓𝑆𝑅𝑖
(𝑡)𝑑𝑡 =

∞

𝑡=0

∫ 𝑡
𝜕

𝜕𝑡
(∏ 𝑃(𝑅𝑀𝑖

≤ 𝑡)
𝑁𝑚

𝑖=1
) 𝑑𝑡

∞

0

. (7)

And, using Eq. (6), we have:

𝑀𝑆𝑇 = ∑ ∫ 𝑡
∞

0

𝐹𝑆𝑅𝑖
(𝑡)

𝑁𝑚

𝑗=1

𝑓𝑅𝑀𝑗
(𝑡)

𝐹𝑅𝑀𝑗
(𝑡)

𝑑𝑡. (8)

Note that the mean sojourn time (MST) is dependent on completion time CDF of each map

task (𝑃(𝑅𝑀𝑖
≤ 𝑡)) expressed by the inter-arrival time and the service time. For heterogeneous

queues (servers with different service times or computational performances) with a general form

joint distribution of task inter-arrival time, we are not aware of any published closed-form

formulations, bound or approximation, for the MST. However, in the case of two homogeneous

queues, there is an approximation and lower/upper bounds [32]. Also for the exponentially

distributed completion time of homogeneous queues, there are some approximations and

boundaries in the statistics literature [33].

20

4-2 Asymptotic Delayed Tailed Completion Time

Before going for optimization case studies, we experimentally validated our model in section 3.2,

now we are interested to analytically justify the usage of our DTD-based model. Using Lemma 1

and Lemma 2, we show that a sufficient condition for having an asymptotic DTD completion time

of all map tasks to a reducer is to have a DTD service time for each mapper node.

Lemma 1: If the service time distribution of the mapper is a DTD, then the completion time

distribution of the map task is asymptotically a DTD (see Appendix A for the proof).

Lemma 2: If the completion time distributions of each map task is a DTD, then the completion

time distribution of all map tasks or sojourn time at a reducer (𝑃(𝑅𝑀 ≤ 𝑡)) is also asymptotically

DTD.

Proof. Assume that 𝑅𝑀 is the completion time of all map tasks, and 𝑅𝑀𝑖 is the completion time of

the 𝑖𝑡ℎ mapper node (where 1 ≤ i ≤ 𝑁𝑀) which has a DTD of the form (1 − 𝑒−Δ𝑖(𝑡−𝑇𝑖))U(t − 𝑇𝑖),

then we have:

𝐹𝑅𝑀
(𝑡) = 𝑃(𝑅𝑀 ≤ 𝑡) = 𝑃 (𝑅𝑀1

≤ 𝑡, … , 𝑅𝑀𝑁𝑚
≤ 𝑡)

= ∏ 𝑃(𝑅𝑀𝑖 ≤ 𝑡)
𝑁𝑚

𝑖=1
= ∏ (1 − 𝑒−𝛥𝑖(𝑡−𝑇𝑖))𝑈(𝑡 − 𝑇𝑖)

𝑁𝑚

𝑖=1

= 1 − ∑ 𝑒−𝛥𝑖(𝑡−𝑇𝑖)𝑈(𝑡 − 𝑇𝑖)
𝑁𝑚

𝑖=1

+ ∑ 𝑒
−(𝛥𝑖(𝑡−𝑇𝑖)+𝛥𝑗(𝑡−𝑇𝑗))

𝑈(𝑡 − 𝑚𝑖𝑛(𝑇𝑖, 𝑇𝑗))
(𝑁𝑚,𝑁𝑚)

𝑖,𝑗=(1,1)
− ⋯

The PDF can be derived by computing the derivative of the CDF, and finally the asymptotic term

of the PDF can be written as follows:

𝑓𝑅𝑀
(𝑡) = 𝑃(𝑅𝑀 = 𝑡) ~ 𝑒

− min
𝑖

𝛥𝑖(𝑡−𝑇𝑖)
𝑈 (𝑡 − 𝑇argmin

𝑖
𝛥𝑖(𝑡−𝑇𝑖)) (9)

21

Because the higher-order terms have a higher decay-rate than the first-order terms, and

having equal decay-rate terms does not change the exponent while just resulting higher base

coefficient. If the completion time has exponential distribution, the resulting completion time is

also exponential, i.e., if one of completion time distribution has a Pareto distribution (logarithmic

part of DTD), sadly the total completion time at a reducer would be asymptotically a Pareto or

long-tailed distribution. □

Consequently, in the case of exponential service time, the sojourn time distribution is also

asymptotically exponential, and we derive the MST closed formula for the servers with different

M/M/1 queues in Lemma 3.

Lemma 3: Given M/M/1 mapper nodes with arrival rate 𝜆𝑖 and service rate 𝜇𝑖 where 𝑖 = 1 … 𝑁𝑚,

using maximum order statistics, the MST of map tasks at a reducer is:

𝑀𝑆𝑇𝑀/𝑀/1 = ∑ {(−1)𝑖+1 ∑
1

∑ (𝜇𝑗𝑘
− 𝜆𝑗𝑘

)𝑖
𝑘=1∀{𝑗1,𝑗2,…,𝑗𝑖}⊂{1,2,…,𝑁𝑚}

}
𝑁𝑚

𝑖=1
. (10)

Proof: The completion time of 𝑗𝑘
𝑡ℎ M/M/1 mapper node is 𝑃 (𝑅𝑀𝑗𝑘

≤ 𝑡) = (1 −

𝑒
−(𝜇𝑗𝑘

−𝜆𝑗𝑘
)𝑡

) 𝑈(𝑡), so we have:

𝐸 {𝑚𝑖𝑛 (𝑅𝑀𝑗1
, … , 𝑅𝑀𝑗𝑖

)} = ∫ 𝑡𝑃 (𝑚𝑖𝑛 (𝑅𝑀𝑗1
, … , 𝑅𝑀𝑗𝑖

) ≤ 𝑡) 𝑑𝑡
∞

0

= ∫ 𝑡 (1 − ∏ 𝑃 (𝑅𝑀𝑗𝑘
> 𝑡)

𝑖

𝑘=1
) 𝑑𝑡

∞

0

=
1

∑ (𝜇𝑗𝑘
− 𝜆𝑗𝑘

)𝑖
𝑘=1

.

(11)

Substituting Eq. (11) in Eq. (7), Eq. (10) can be obtained. □

22

4-3 MST Variation in DTD Model

This section wants to give some visual intuition about MST metric variation in terms of total arrival

rate and number of mapper nodes in the system. The rationale behind these behaviors motivates us

to explore optimization case studies in next sections.

Using validated DTD completion time in section 3.2, the variation of the MST with respect

to the mean arrival rate of the job can be derived and is shown in Figure 4-1 (a), when the mean

service rate of each mapper is 𝜇𝑖 = 1, and the number of mappers is 𝑁𝑚 = 60. When the arrival

rate of the job increases, the task arrival rates of the mappers grow, and the MST at a reducer

homographically tends to infinity. This homographical growth similarly happens in congested

network by increasing the number of sources [43] and also the Kingman’s formula [46] shows this

phenomenon analytically.

Figure 4-1 (b) gives an intuition about the variation of the MST in terms of the number of

mappers (𝑁𝑚), when the service rate of each mapper node is 𝜇𝑖 = 1, and the mean arrival rate of

the job is 𝜆 = 2. When the number of mapper nodes increases more than 10, the amount of task

assigned to each mapper reduces, but the time required to sync the mappers grows. Finally the MST

asymptotically tends to infinity with the order of 𝑂(𝑙𝑜𝑔𝑒(𝑁)) where 𝑁 is the number of mappers.

The reason is that the derivative of the MST (8) is proportional to the reciprocal of the

number of mappers. Intuitively, there is a logarithmic algorithm to sync and merge completed tasks

at a reducer, when a sync/merge operation can only happen between two completed tasks, as it has

been also verified in [44]. Based on the discussion above, we can conclude that the MST (the

average time necessary to synchronize map tasks before the reduce phase) can be stochastically

expressed using the completion time of the map tasks. As such, MST can show the overall behavior

of the system well in terms of job inter-arrival rate and number of mappers. And it is reasonable

that our goal is to minimize the MST with respect to task scheduling.

23

(a)

(b)

Figure 4-1. The MST with respect to (a) the total arrival rate and (b) the number of mapper nodes.

0 5 10 15 20 25
4

5

6

7

8

9

Total Arrival Rate

M
e

a
n

 S
o

jo
u

rn
 T

im
e

10 20 30 40 50 60 70
3.5

4

4.5

5

Number of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

24

Potential Uses of the Model

Using our model, performance metrics of a parallel-running job such as response time or throughput

can be optimized under power or budget constraints, and a corresponding scheduler can be

obtained. A homogeneous or heterogeneous datacenter can be expressed using uniform (𝜇1 = 𝜇2 =

⋯ = 𝜇𝑁𝑚
) or non-uniform (𝜇1 ≠ 𝜇2 ≠ ⋯ ≠ 𝜇𝑁𝑚

) service rates (Figure 2-1). We envision three

potential uses of our model with respect to architecture, system, and application parameters of a

datacenter:

1. One can model the performance parameters of nodes in a datacenter using inter-

arrival times and service times of task trackers’ queues more accurately, because

it captures the deterministic behavior of task completion and the stochastic

notion of the straggler problem.

2. One can model the performance parameters of a MapReduce job as a fork-join

network in a fashion that is more detailed than an M/M/1 queuing model but

easier than a general distribution-based model. It can be used globally to improve

the performance of a MapReduce job in a datacenter.

3. Our model can also be used to optimize other target metrics such as throughput

or utilization with power or budget constraints in a heterogeneous datacenter.

The delayed tailed model of completion time of mappers is an extended version of

exponential or Pareto distributed model. It has the flexibility of being able to represent the arrival

and service rates of different classes of workloads and cluster nodes. For example, the offset time

parameter in Eq. (3) of a CPU-bound job is higher than that of a memory-bound job. Since the

memory access times are random and take much longer than CPU access times, they can also be

modeled by DTD.

25

In addition, there is high degree of freedom to adjust the departure rates of mappers to

reducers (𝜆𝑖,𝑗; 𝑖 = 1. . 𝑁𝑚 and 𝑗 = 1. . 𝑁𝑟) as shown in Figure 2-1, and we can solve linear

independent equations to find reducers’ arrival rates. By applying a DTD completion time model

to reducers, we can have similar MST formulations for reducers to optimize MST for the end to

end job as well.

The non-delayed (pure Pareto or exponential) distribution model, having its highest value

at zero (time=0), cannot capture the probability of two consecutive completed jobs with minimum

inter-arrival time, because minimum inter-arrival time must be a positive value not zero. The DTD

completion time model is also a good approximation of the completion time of a typical datacenter

server as a single queue, and can be employed in the analysis of different types of distributed

computing networks. Based on Lemma 1, the DTD completion time can be obtained using the DTD

service time, and this makes most of the analytical formulas much simpler.

Since the focus of our work is on performance, we use MST as an end-to-end delay-aware

metric; other analyses may use different metrics depending on their specific focus. The potential

metrics of interest could be money budget, power budget, power/performance, or other

combinations. First, the specification of the clusters and workloads should be evaluated.

Considering Figure 2-2 and Eq. (3), the service rate of the server and offset time related to the

application can be obtained from the specifications. One can therefore derive a DTD model for the

service time. Then, the completion time model can be obtained using the distribution of job inter-

arrival time that is discussed in the proof of Lemma 1 in Appendix A.

We are interested in investigating the behavior of different schedulers via the single queue

model of mappers with the DTD completion time when jobs come to the datacenter. This can be

extended to a generalized multiple-queue model when we have multiple classes of jobs submitted

to a datacenter. Table 4 gives a quick summary of the lemmas used in this thesis.

26

Table 5-1. Summary of the lemmas.

Lemma Explanation

1 DTD service time → DTD Completion time for a mapper.

2 DTD service time → DTD completion time for all map tasks.

3 MST formula for M/M/1 mapper node.

4 Equilibrium property for D/D/1.

5 Equilibrium property for M/M/1.

6 Equilibrium property for G/M/1.

7 Sufficient conditions for optimal scheduling.

8 Optimal mapping from moments of the distribution.

9 Lower bound and upper bound of MST.

10 Optimal number of M/M/1 mapper nodes.

11 Optimal number of homogeneous mapper nodes.

12 Optimal number of mapper nodes for a fixed budget.

27

Optimal Job Scheduling for Stragglers

We investigate the optimal job scheduling with respect to mean sojourn time. Our analysis is carried

out for different mapper types to address the straggler problem. We introduce two new schedulers

“pure-deterministic” and “pure-stochastic” schedulers after fair job scheduler [5] which gradually

improve the performance of the MapReduce job in case of having DTD completion time. The

formulation of each scheduler is subsequently followed by its analytical results and then its

simulation results.

We have employed COTSON full-system simulator [34] for multi-node cluster. Our

COTSON implementation, using parallel discrete-event model, provides networking by a mediator

for the system of up to two hundred nodes, half of which set low-performance (2.4GHz) and the

rest set high-performance (3.0GHz), in our experiments. We have installed Hadoop 2.6.0 [47] on

all nodes, and configured to support a heterogeneous cluster. The offline Wikipedia [48] is used to

do Grep, WordCount, and TeraSort operations. To derive the DTD-like characteristic curve of each

node type for completion time, the mentioned operations are performed on randomly chosen pages

of Wikipedia. The resulting DTD of completion time is used to obtain the scheduling results on

real workloads. Note that, the stochastic behavior in our environment stem from data skew and

network congestion.

6-1 Fair Job Scheduler

Hadoop fair job scheduler as the simplest way of load balancing divides and sends the same amount

of task to each mapper node with task arrival rate 𝜆𝑖 and service rate 𝜇𝑖 for 𝑁𝑚 mapper nodes, i.e.,

if there is no data computation skew, we have:

28

𝜆1 = 𝜆2 = 𝜆3 = ⋯ = 𝜆𝑁𝑚
= 𝜆/𝑁𝑚. (12)

The fair job scheduler is optimal when we have a completely homogeneous cluster and no

data skew. The “no bottleneck system necessary condition” means that the mean job arrival rate

should be less than the total service rate of the mapper nodes (i.e., 𝜆 < ∑ 𝜇𝑖
𝑁𝑚
𝑖=1), which here is:

𝜆 < 𝑁𝑚𝜇𝑚𝑖𝑛. (13)

A fair job scheduler makes the mean task arrival rates equal for all mappers as in Eq. (12),

i.e., it gives each mapper the same amount of work. Figure 6-1 plots the analytical results of fair

job scheduler for a cluster with the same number (from 40 to 200) of low-performance (mean

service time 𝜆𝑖 = 0.8) and high-performance (𝜆𝑖 = 1) nodes. The MST of the fair job scheduler in

Eq. (12), with respect to the total arrival rate and the number of heterogeneous mappers, always

increases when the total arrival rate increases. However, the MST with respect to the number of

nodes has a minimum, i.e., there is the optimal number of nodes, given a job arrival rate. However,

increasing the number of nodes decreases the amount of tasks for each node, and the

synchronization time to commit the whole job increases. Also, if the job arrival rate increases, the

minimum number of mappers also increases.

The results of the real workloads shown in Figure 6-2 are the MST of heterogeneous nodes

(half low-performance half high-performance) with the fair job scheduler in terms of seconds.

While they match with the analytical results in Figure 6-1, they indicate that the response time or

job completion time goes up rapidly with elevating the data size, and the system response time

needs more time to merge the outputs, but the high-performance nodes finish their job much earlier

than the others.

29

Figure 6-1. The MST with respect to the total arrival rate and the number of mapper nodes for the

fair job scheduler.

Figure 6-2. The MST of heterogeneous nodes with the fair job scheduler.

10
11

12
13

14
15

0

50

100

150

200

6.5

7

7.5

8

8.5

9

Total Inter-Arrival Rate (jobs/s)Number of Mapper Nodes (#)

M
e
a
n
 S

o
jo

u
rn

 T
im

e
 (

s
)

0

100

200

300

400

500

600

700

Grep WordCount TeraSort Grep WordCount TeraSort Grep WordCount TeraSort

Low-Performance servers High-Performance servers System Response Time

DataSize=1GB DataSize=2GB DataSize=3GB

30

6-2 Pure-Deterministic Scheduler

We start by giving the definition of the optimal mapping with respect to MST, and then we deduct

an equilibrium property that can be used to mathematically express the behavior of the different

types of schedulers. In the case of having deterministic completion times (no distribution no

ambiguity), we investigate pure-deterministic scheduler, and then in the case of having random

completion times, we derive pure-stochastic scheduler.

Definition 3 (Optimal mapping based on MST): Optimal mapping for a known number of mappers

(𝑁𝑚) identifies the optimal task arrival rates (𝜆1,𝜆2, … , 𝜆𝑁𝑚) making MST minimum. The

constraint here is the mean job arrival rate to the system (λ). The service rate of each mapper is

assumed to have a known distribution with a mean of 𝜇𝑖. In mathematical terms, we have:

𝑚𝑖𝑛
𝜆

(𝑀𝑆𝑇) = 𝑚𝑖𝑛
𝜆

∫ 𝑡
𝜕

𝜕𝑡
(∏ 𝐹𝑅𝑀𝑖

(𝑡)
𝑁𝑚

𝑖=1
) 𝑑𝑡

∞

0

𝑆. 𝑡. 𝜆 = ∑ 𝜆𝑖

𝑁𝑚

𝑖=1
; 𝜆 = [𝜆1𝜆2𝜆3 … 𝜆𝑁𝑚

]
𝑇

(14)

where FRMi
(t) is the CDF of the completion time of the ith mapper as a function of μi and λi. The

optimal solution of the mapping problem is derived by using the Lagrange Multipliers method and

solving the following set of non-linear equations:

𝛻𝜆,𝛼 (𝑀𝑆𝑇 − 𝛼 (𝜆 − ∑ 𝜆𝑖

𝑁𝑚

𝑖=1
)) = 0 (15)

where 𝛻𝜆,𝛼(.) is the multi-dimensional gradient operator with respect to 𝜆 and α. We now give the

following definition as a property for having optimal MST.

Definition 4 (Equilibrium Property): To optimize the mapping of the tasks, the set of non-linear

equations derived from Eq. (15) have the Equilibrium Property (EP) with the linear constraint λ =

∑ 𝜆𝑖
𝑁𝑚
𝑖=1 . Solving the set of non-linear equations gives the optimal solution for 𝜆. The equilibrium

property can be expressed as:

31

𝜕𝑀𝑆𝑇

𝜕𝜆1
=

𝜕𝑀𝑆𝑇

𝜕𝜆2
= ⋯ =

𝜕𝑀𝑆𝑇

𝜕𝜆𝑁𝑚

. (16)

The above property cannot be easily solved or practically used to optimize MapReduce job

scheduling. It is an 𝑁𝑚-dimensional non-linear optimization problem with a linear constraint. We

will shortly present several sufficient conditions to satisfy the equilibrium property captured in

Lemma 7. The following lemmas handle certain special cases where Equation (8) can be easily

solved.

Lemma 4: Given Def.2-4 for D/D/1 mapper nodes (𝑖 = 1 … 𝑁𝑚), equilibrium property can be

expressed as follows:

𝜇1

𝜆1
=

𝜇2

𝜆2
= ⋯ =

𝜇𝑁𝑚

𝜆𝑁𝑚

 (17)

We call the above property the deterministic equilibrium property (D-EP), and the optimal

scheduler for this property is pure-deterministic scheduler where 𝜆𝑖 is:

𝜆𝑖 = 𝜆
𝜇𝑖

∑ 𝜇𝑗
𝑁𝑚
𝑗=1

 ; 𝑖 = 1 … 𝑁𝑚. (18)

Proof. Eq. (17) can be derived by making the deterministic completion times of all tasks equal

using:

𝜇1

𝜆1
=

𝜇2

𝜆2
= ⋯ =

𝜇𝑁𝑚

𝜆𝑁𝑚

=
∑ 𝜇𝑗

𝑁𝑚
𝑗=1

∑ 𝜆𝑗
𝑁𝑚
𝑗=1

, (19)

as 𝜆 = ∑ 𝜆𝑗
𝑁𝑚
𝑗=1 , Eq. (18) is deduced. □

Fair queue, shortest queue-length first or μ-proportional (service-time proportional)

scheduling make the queue-lengths equal and are the same as the pure-deterministic scheduling in

Eq. (17) as we have:

Q1 = Q2 = ⋯ = QNm ⟺ ρ1 = ρ2 = ⋯ = ρNm (20)

32

Considering 𝑇𝑖 ∝ 𝜆𝑖/𝜇𝑖, i.e., the offset of the DTD completion time has a linear

relationship with 𝜆𝑖/𝜇𝑖; we can say that pure-deterministic scheduling and shortest queue first

scheduling are equivalent. This is because we have:

𝜆1

𝜇1
=

𝜆2

𝜇2
= ⋯ =

𝜆𝑁𝑚

𝜇𝑁𝑚

⟺ 𝑇1 = 𝑇2 = ⋯ = 𝑇𝑁𝑚. (21)

Figure 6-3 plots the MST of the pure-deterministic scheduler with respect to the total

arrival rate and the number of heterogeneous mapper nodes. The MST growth given by the total

arrival rate is homographic versus the MST growth given by the number of mapper nodes

is 𝑂(𝑙𝑛(𝑛)) as the overhead rate of the whole job synchronization. Comparing Figure 6-1 with

Figure 6-3, one can see that the pure-deterministic scheduler has a lower MST when the incoming

job rate increases compared to the fair job scheduler. However, cloning the number of nodes, the

trend of MST elevation in pure-deterministic scheduler is nearly the same as the fair job scheduler.

Figure 6-3. The MST with respect to the arrival rate and the number of mapper nodes for a pure-

deterministic scheduler.

10
11

12
13

14
15

0

50

100

150

200

6.5

7

7.5

8

8.5

Total Inter-Arrival Rate (jobs/s)Number of Mapper Nodes (#)

M
e
a
n
 S

o
jo

u
rn

 T
im

e
 (

s
)

33

Figure 6-4 shows some real workload results for heterogeneous nodes with the pure-

deterministic scheduler. One can observe from these results that pure-deterministic scheduler

reduces the MST difference between low-performance and high-performance nodes rather than the

fair job scheduler, but there is still a non-negligible MST skew among them.

Figure 6-4. The MST of heterogeneous nodes with the pure-deterministic scheduler.

6-3 Pure-Stochastic Scheduler

When the completion times of the servers are stochastic by some distributions, we investigate pure-

stochastic scheduler to get the optimal MST. The following lemma shows the closed-form formula

to adjust pure-stochastic scheduler in the case of having Markovian mappers.

Lemma 5: Given Def.2-4 for M/M/1 mapper nodes (𝑖 = 1 … 𝑁𝑚), the EP would be (see the proof

in Appendix B):

𝜇1 − 𝜆1 = 𝜇2 − 𝜆2 = ⋯ = 𝜇𝑁𝑚
− 𝜆𝑁𝑚

. (22)

We call above property stochastic equilibrium property (S-EP), and the optimal scheduler knobs

for S-EP are the following optimal 𝜆𝑖s:

0

50

100

150

200

250

300

350

400

450

Grep WordCount TeraSort Grep WordCount TeraSort Grep WordCount TeraSort

Low-Performance servers High-Performance servers System Response Time

DataSize=1GB DataSize=2GB DataSize=3GB

34

𝜆𝑖 = 𝜇𝑖 +
𝜆 − ∑ 𝜇𝑗

𝑁𝑚
𝑗=1

𝑁𝑚
 ; 𝑖 = 1 … 𝑁𝑚. (23)

Having no bottleneck system as the inequality λ < ∑ μi
Nm
i=1 , there would be no bottleneck

mapper node (i.e., λ𝑖 < 𝜇𝑖), but we may have negative values for some λi, i.e., some jobs should be

migrated from slow nodes (i) to other nodes. Thus, the no negative λi necessary condition is:

∑ (𝜇𝑖 − 𝜇𝑚𝑖𝑛)
𝑁𝑚

𝑖=1
< 𝜆. (24)

Q-proportional (queue-length proportional) scheduling and pure-stochastic scheduling are

equivalent, because 𝑄𝑖 = 𝜆𝑖/(𝜇i − 𝜆i), so we have:

𝜆1

𝑄1
=

𝜆2

𝑄2
= ⋯ =

𝜆𝑁𝑚

𝑄𝑁𝑚

⟺ 1/(𝜇1 − 𝜆1) = ⋯ = 1/(𝜇𝑁𝑚
− 𝜆𝑁𝑚

). (25)

Figure 6-5 plots the MST of the pure-stochastic scheduler with respect to the total arrival

rate and the number of heterogeneous mapper nodes. The MST growth trend is similar to that of

the other scheduler. Comparing Figure 6-5 against Figure 6-1 and Figure 6-3, one can observe that

the pure-stochastic scheduler has a lower MST under total arrival rate and the number of nodes.

Figure 6-6 shows the simulation results for heterogeneous nodes (half low-performance;

half high-performance) under the pure-stochastic scheduler. In this case, the MST of the nodes is

nearly equal and consequently the MST of the system improves. Actually we have done for other

percentages, and we have derived the similar results.

From the data size or job rate angle, pure-stochastic mapping has a lower MST compared

to the fair job and pure-deterministic mappings shown in Figure 6-7. The MST of the pure-

stochastic strategy is lower than the others even under very low arrival rates.

35

Figure 6-5. The MST with respect to the arrival rate and the number of mapper nodes for a pure-

stochastic scheduler.

Figure 6-6. The MST of heterogeneous nodes with the pure-stochastic scheduler.

10
11

12
13

14
15

0

50

100

150

200

6

6.5

7

7.5

8

8.5

Total Inter-Arrival Rate (jobs/s)Number of Mapper Nodes (#)

M
e
a
n
 S

o
jo

u
rn

 T
im

e
 (

s
)

0

50

100

150

200

250

300

Grep WordCount TeraSort Grep WordCount TeraSort Grep WordCount TeraSort

Low-Performance servers High-Performance servers System Response Time

DataSize=1GB DataSize=2GB DataSize=3GB

36

Figure 6-7. The MST comparison between fair job scheduler, pure-deterministic scheduler, and

pure-stochastic scheduler.

6-4 More Advanced Schedulers

We investigate more sophisticated stochastic schedulers in terms of general job arrival rates and

service rates. Based on the result of each lemma, we come up with its equilibrium property (EP),

and then based on the EP, an algorithm is described that converges to the task arrival rates to the

mappers, and can be used in an advanced scheduler based on that EP to extract task arrival rates.

Lemma 6: Given Def.2-4 for G/M/1 mappers (𝑖 = 1 … 𝑁𝑚), the equilibrium property for optimal

MST would be as follows (proof in Appendix C):

𝜇1(1 − 𝑟01) = 𝜇2(1 − 𝑟02) = ⋯ = 𝜇𝑁𝑚
(1 − 𝑟0𝑁𝑚

) (26)

where 𝑟0𝑖
 is the unique real root of z = 𝐴𝑖

∗[𝜇𝑖(1 − 𝑧)] in (0,1) and 𝐴𝑖
∗ is the LST (Laplace–Stieltjes

transform) of 𝐴𝑖(t) (CDF of inter-arrival time). The solution of the MST for G/M/1 mappers is not

trivial and the following algorithm shows how we can find the optimal arrival rates.

0 5 10 15 20 25
0

10

20

30

40

50

Total Inter-Arrival Rate (jobs/sec)

M
e

a
n

 S
o

jo
u

rn
 T

im
e

 (
s
e

c
)

Fair Job Scheduler

Pure-Deterministic Scheduler

Pure-Stochastic Scheduler

37

Algorithm 1: Given G/M/1 mapper nodes, Alg. 1 finds CDFs of optimal inter-arrival time (Ai) for

the equilibrium property in Eq. (26).

Given Def.2, the LST of Ai is the function of the mean task inter-arrival time (𝜆𝑖). Let Ai
∗ =

gi(λi). Also, gi
−1(Ai

∗) exists in (0, λ) where λ is total mean arrival rate of the system, e.g. in M/M/1

case we have Ai
∗(s) = λi/(λi + s) and λi = Ai

∗s/(1 − Ai
∗). The cost function that we are interested

to find the root by Secant Method [35] with small error ϵ is as follows:

𝑓(𝛼) = 𝜆 − ∑ 𝑔𝑖
−1(𝐴𝑖

∗(𝛼))
𝑁𝑚

𝑖=1
 (27)

1. Let α0 = 0.5μmin, α1 = μ1(1 − g1(λ/Nm)), n = 1

2. n = n + 1

3. αn = αn−1 −
f(αn−1)(αn−1−αn−2)

f(αn−1)−f(αn−2)

4. if (|f(αn)| > ϵ) then go to 2, else α = αn.

Before deriving the corresponding expressions for other distributions, let us first give the

sufficient conditions to achieve the optimal mapping.

Lemma 7: Given Def.2-4, if one of the following sufficient conditions is satisfied, the solution of

the equations set of the sufficient condition and linear constraint (𝜆 = ∑ 𝜆𝑖
𝑁𝑚
𝑖=1) is guaranteed to be

optimal ∀𝑡 ∈ ℛ+, ∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}:

1

𝐹𝑅𝑀𝑖

𝜕

𝜕𝜆𝑖
𝐹𝑅𝑀𝑖

(𝑡) =
1

𝐹𝑅𝑀𝑗

𝜕

𝜕𝜆𝑗
𝐹𝑅𝑀𝑗

(𝑡) (28)

𝐹𝑅𝑀𝑖
(𝑡) = 𝐹𝑅𝑀𝑗

(𝑡) (29)

𝑀𝑅𝑀𝑖
(𝑡) = 𝑀𝑅𝑀𝑗

(𝑡); 𝑀𝑋(𝑡) = 𝐸{𝑒𝑡𝑋} (30)

∀𝑠 ∈ ℛ, ∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}: 𝑊𝑖
∗(𝑠) = 𝑊𝑗

∗(𝑠) (31)

where FRMi
(t) is CDF, MRMi

(t) is moment-generating function, and Wi
∗(s) is the LST of the

completion time of the ith mapper node (see the proof in Appendix D). Also, for M/G/1 mappers

38

with arrival rate 𝜆𝑖 and service time distribution 𝑔𝑖(𝑡) (𝐸{𝑔𝑖(𝑡)} = 𝜇𝑖), the sufficient condition to

have optimal mapping by inspiring from Eq. (31) is:

(1 −
𝜆𝑖
𝜇𝑖

) 𝑠𝑔𝑖(𝑠)

𝑠 − 𝜆(1 − 𝑔𝑖(𝑠))
=

(1 −
𝜆𝑗

𝜇𝑗
) 𝑠𝑔𝑗(𝑠)

𝑠 − 𝜆 (1 − 𝑔𝑗(𝑠))
, (32)

where 𝑔𝑖(𝑠) and 𝑊𝑖
∗(𝑠) are respectively the LST of 𝑔𝑖(𝑡) and the completion time of 𝑖𝑡ℎ mapper

node. This conclusion can be easily derived from the Pollaczek-Khintchine transform. Also for

G/G/1 mapper nodes with LST of inter-arrival time distribution 𝐴𝑖
∗(𝑠) and LST of service time

distribution 𝐵𝑖
∗(𝑠), the sufficient condition to have optimal mapping, by inspiring from Eq. (31), is:

𝑊𝑞𝑖
(0)𝐵𝑖

∗(𝑠) + (1 − 𝑊𝑞𝑖
(0)) 𝐵𝑖

∗(𝑠)𝑊𝑞𝑖
∗(𝑠)

= 𝑊𝑞𝑗
(0)𝐵𝑗

∗(𝑠) + (1 − 𝑊𝑞𝑗
(0)) 𝐵𝑗

∗(𝑠)𝑊𝑞𝑗
∗ (𝑠)

(33)

whose 𝑊𝑞𝑖
∗ (𝑠) is the LST of waiting time distribution and satisfies Lindley’s equation 𝑊𝑞𝑖

(𝑡) =

− ∫ 𝑊𝑞𝑖
(𝑥)𝑑𝑈𝑖(𝑡 − 𝑥)

∞

0
 such that 𝑈𝑖(𝑥) = ∫ 𝐵𝑖(𝑡)𝑑𝐴𝑖(𝑡 − 𝑥)

∞

𝑚𝑎𝑥 (0,𝑥)
.

Corollary 8: Given Def.2-4 of MST problem, if we have the moments of the distribution of task

inter-arrival time (𝐴(𝑡)), the optimal mapping exists.

Proof. Similar to Eq. (26) and Eq. (27) you can assume the following relation between the LST of

task inter-arrival times (𝐴𝑖
∗(𝑠)) and the LST of completion times (𝑊𝑖

∗(𝑠)):

𝑊𝑖
∗(𝑠) = 𝑓(𝐴𝑖

∗(𝑠)); ∀𝑠 ∈ ℛ, ∀𝑖 ∈ {1,2, … , 𝑁𝑚}, ∃𝑓 (34)

At this point, we just need to adjust the moments of inter-arrival times to satisfy Eq. (31) and the

constraint while we have:

1 +
𝑠

1!
𝑊𝑖

∗′(0)
+

𝑠2

2!
𝑊𝑖

∗′′(0)
+ ⋯ = 𝑓(1 +

𝑠

1!
𝐴𝑖

∗′(0) +
𝑠2

2!
𝐴𝑖

∗′′(0) + ⋯), (35)

As the number of unknown variables (𝐴𝑖
∗(𝑠)) and the related Eq. (35) and the linear

constraint are equal, the optimal mapping can be explored. □

39

In the next lemma, we obtain results which are more suitable to be employed in practice,

because it is difficult and time-consuming to get the best mapping of any inter-arrival time

distribution. Instead, we can try making the first moment (mean) of the completion time distribution

equal. It is equivalent to make the first terms of Taylor’s series of the LST of completion time

distribution (𝑊𝑖
′(𝑠 = 0)) equal. The lemma below gives the boundaries of the MST, as well as an

approximate solution, which can be very useful in most of the practical cases.

Lemma 9: Given Def.2-4 the lower bound and upper bound of MST can be found as follows (proof

in Appendix E):

𝑚𝑎𝑥 (𝐸{𝑅𝑀1}, 𝐸{𝑅𝑀2}, … , 𝐸 {𝑅𝑀𝑁𝑚
}) ≤ 𝑀𝑆𝑇 ≤ ∑ 𝐸{𝑅𝑀𝑖}

𝑁𝑚

𝑖=1
 (36)

The equilibrium property of lower bound can be expressed as:

𝐸{𝑅𝑀1} = 𝐸{𝑅𝑀2} = ⋯ = 𝐸 {𝑅𝑀𝑁𝑚
} (37)

that we call it “means equilibrium property” (M-EP) and approximate optimal scheduler can

perform the M-EP. But the “derivative of means equilibrium property” (DM-EP) optimizes MST

upper bound:

𝑑

𝑑𝜆1
𝐸{𝑅𝑀1} =

𝑑

𝑑𝜆2
𝐸{𝑅𝑀2} = ⋯ =

𝑑

𝑑𝜆𝑁𝑚

𝐸 {𝑅𝑀𝑁𝑚
}. (38)

M-EP approximately optimizes MST and gives sub-optimal mean arrival rates (𝜆) by

making the first moments of completion times equal. The only degrees of freedom are the mean

arrival rates (𝜆), so in an approximate approach, we can only have the M-EP and not the other

higher moments equal. This approximation is correct when the other moments of the completion

time of the tasks are negligible or the deviation in Eq. (30) is insignificant, i.e., when there is no

bottleneck server in the system. In fact, the gap between the optimal solution and this approximate

solution is insignificant. We now present the algorithms to have M-EP for DTD/DTD/1, M/G/1

40

and G/G/1 mapper nodes. MST of a DTD mapper can be expressed as 𝑇𝑖 + 1/(𝜇𝑖 − 𝜆𝑖), where

𝑇𝑖 = 𝐷𝜆𝑖/𝜇𝑖 for some constant 𝐷. Consequently the M-EP for DTD mapper nodes would be:

∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}: 𝑇𝑖 + 1/(𝜇𝑖 − 𝜆𝑖) = 𝑇𝑗 + 1/(𝜇𝑗 − 𝜆𝑗) (39)

Algorithm 2: Given DTD mapper nodes Alg. 2 will find sub-optimal arrival rates (𝜆𝑖) for the

equilibrium property in Eq. (39), where it is just needed to iterate Alg.1 with the cost function as:

𝑓(𝛼) = 𝜆 − ∑
(𝛼 + 𝐷)𝜇𝑖 − √(𝜇𝑖(𝛼 − 𝐷))

2
+ 4𝐷𝜇𝑖

2𝐷

𝑁𝑚

𝑖=1

(40)

M-EP for M/G/1 mapper nodes (∀𝑖, 𝑗 ∈ {1, … , 𝑁𝑚}) is:

𝜆𝑖 (𝜎𝐵𝑖

2 +
1

𝜇𝑖
2)

2 (1 −
𝜆𝑖
𝜇𝑖

)
+

1

𝜇𝑖
=

𝜆𝑗 (𝜎𝐵𝑗

2 +
1

𝜇𝑗
2)

2 (1 −
𝜆𝑗

𝜇𝑗
)

+
1

𝜇𝑗
. (41)

where 𝜆𝑖, 𝜇𝑖, and 𝜎𝐵𝑖

2 are respectively the 𝑖𝑡ℎ mapper’s arrival rate, mean service rate, and variance

of service rate.

Algorithm 3: Given M/G/1 mappers, Alg. 3 finds sub-optimal arrival rates (𝜆𝑖) for the equilibrium

property in Eq. (41), where it is just needed to iterate over Alg.1 with the following cost function:

𝑓(𝛼) = 𝜆 − ∑ 1/(

𝜎𝐵𝑖

2 +
1

𝜇𝑖
2

2 (𝛼 −
1
𝜇𝑖

)
+

1

𝜇𝑖
)

𝑁𝑚

𝑖=1
. (42)

Using Kingman’s approximation, M-EP for G/G/1 is:

∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}

𝜆𝑖
𝜇𝑖

(
𝜎𝐴𝑖

2

𝜆𝑖
2 +

𝜎𝐵𝑖

2

𝜇𝑖
2)

2(𝜇𝑖 − 𝜆𝑖)
+

1

𝜇𝑖
=

𝜆𝑗

𝜇𝑗
(

𝜎𝐴𝑗

2

𝜆𝑗
2 +

𝜎𝐵𝑗

2

𝜇𝑗
2)

2(𝜇𝑗 − 𝜆𝑗)
+

1

𝜇𝑗

(43)

41

Algorithm 4: Given G/G/1 mappers for the defined problem in Def. 2-4, Alg. 4 finds the sub-

optimal mean arrival rates (𝜆𝑖) for the equilibrium property in Eq. (43), where it is just needed to

iterate Alg.1 with knowing ∀𝑖: 𝜎𝐴𝑖

2 /𝜆𝑖
2 = 𝜎𝐴

2/𝜆2 by the cost function as follows:

𝑓(𝛼) = 𝜆 − ∑ 𝜇𝑖/(1 +
1

𝜇𝑖
(

𝜎𝐴
2

𝜆2
+

𝜎𝐵𝑖

2

𝜇𝑖
2) / (2𝛼 −

2

𝜇𝑖
))

𝑁𝑚

𝑖=1
. (44)

In the following graphs (Figure 6-8 (a) to Figure 6-8 (d)) we use our DTD model of the

map phase for a CPU-bound job (when 𝑇𝑖 as the deterministic coefficient is big, i.e. 𝐷 ≫ 1) and a

memory-bound job (when 𝑇𝑖 is small, i.e. 𝐷 ≈ 0). The graphs show the comparison between

different schedulers as mentioned before with respect to total mean arrival rate and number of

heterogeneous mapper nodes.

When the target MapReduce job is memory-bound, it is more stochastic and the

deterministic coefficient for this type of job is close to zero. For memory-bound jobs, the optimal

scheduler that tries to find 𝜆𝑖s minimizing MST is nearly coincident with pure-stochastic, M-EP,

and DM-EP schedulers. For CPU-bound jobs, the optimal scheduler is nearly coincident with pure-

deterministic and M-EP schedulers. As a result, M-EP is a good approximation of optimal solution

in this model. When the input job is CPU-bound, the pure-stochastic scheduler cannot track the

optimal completion time well. Other schedulers, in some cases, outperform the non-negative

optimal scheduler, because they output negative 𝜆𝑖, i.e. job migration. The non-negative optimal

scheduler always gives positive non-migratory 𝜆𝑖, but in a non-negative region the optimal

scheduler outperforms the others.

The same scenario in simulation results (Figure 6-9) indicates that the pure-stochastic

scheduler can make all mappers’ completion times nearly equal, and the other schedulers’ deviation

is higher. Since MST is a function of the slowest node, here M-EP is near to the pure-stochastic

scheduler, and it is on the average 129% more effective than the fair job scheduler and 51% better

than ideal deterministic approaches.

42

(a)

(b)

(c)

(d)

Figure 6-8. The MST comparison of different schedulers with respect to total arrival rate and

number of mappers for (a) memory-bound job (𝑫 ≈ 𝟎), (b) CPU-bound job (𝑫 = 𝟏𝟎𝟎), (c)

memory-bound job (𝑫 ≈ 𝟎), and (d) CPU-bound job (𝑫 = 𝟏𝟎𝟎).

Figure 6-9. The MST of heterogeneous nodes with different schedulers

10 12 14 16 18 20 22 24 26 28 30
6

6.5

7

7.5

8

8.5

9

9.5
Mean Sojourn Time vs. Total Inter-Arrival Rate

Total Inter-Arrival Rate

M
ea

n
S

oj
ou

rn
 T

im
e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

10 12 14 16 18 20 22 24 26 28 30
15

20

25

30

35

40

45

50
Mean Sojourn Time vs. Total Inter-Arrival Rate

Total Inter-Arrival Rate

M
ea

n
S

oj
ou

rn
 T

im
e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

Optimal

40 60 80 100 120 140 160 180 200

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes

M
ea

n
S

oj
ou

rn
 T

im
e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

0
50

100
150
200
250
300
350
400

Fa
ir

 J
o

b

P
u

re
-

d
et

er
m

in
is

ti
c

P
u

re
-s

to
ch

as
ti

c

Fa
ir

 J
o

b

P
u

re
-

d
et

er
m

in
is

ti
c

P
u

re
-s

to
ch

as
ti

c

Fa
ir

 J
o

b

P
u

re
-

d
et

er
m

in
is

ti
c

P
u

re
-s

to
ch

as
ti

c

Grep WordCount TeraSort

Low-Performance servers High-Performance servers System Response Time

43

Optimal Number of Mappers

It is interesting to note that there is the optimal number of mappers that makes the mean sojourn

time minimum. Because, when we increase the number of mappers in the system, the amount of

scheduled task for each mapper decreases. As a result, the smaller jobs can be completed sooner.

However, blindly increasing the number of mappers is not a good strategy, because more mappers

need more time to be synced. Therefore, there is a tradeoff between smaller job completion time

and higher sync time. A general closed form solution for the optimal number of mappers is very

difficult. The following definition gives the description of the optimal number of mapper nodes,

and the next lemma solves the problem.

Definition 5 (Optimal Number of Mappers): Given Def.2-4 the optimal number of mappers is an

integer number that makes the mean sojourn time minimum. If 𝐹(𝑡) is CDF of completion time of

any map task, then we have:

𝑚𝑖𝑛
𝑁𝑚

(𝑀𝑆𝑇) = 𝑚𝑖𝑛
𝑁𝑚

{𝑁𝑚 ∫ 𝑡𝑓(𝑡)𝐹𝑁𝑚−1(𝑡)𝑑𝑡
∞

0

} (45)

Lemma 10: Given Def.5 for M/M/1 mapper nodes with 𝜇 as the service rate and 𝜆 as the total

arrival rate to the system, the optimal number of mapper nodes to minimize MST is equal to the

minimum value of the following function with respect to 𝑛:

𝑓(𝑛) =
1

𝜇 − 𝜆/𝑛
∑ ((−1)𝑖+1

𝑛!

(𝑛 − 𝑖)! (𝑖 − 1)!
)

𝑛

𝑖=1
 (46)

Proof. In Eq. (10), we make all 𝜇𝑗𝑘
− 𝜆𝑗𝑘

= 𝜇 − 𝜆/𝑁𝑚:

𝑀𝑆𝑇M/M/1 = ∑ {(−1)𝑖+1 ∑
1

∑ (𝜇𝑗𝑘
− 𝜆𝑗𝑘

)𝑖
𝑘=1∀{𝑗1,…,𝑗𝑖}⊂{1,2,…,𝑁𝑚}

}
𝑁𝑚

𝑖=1

44

= ∑ {(−1)𝑖+1 ∑
1

𝑖 (𝜇 −
𝜆
𝑛

)∀{𝑗1,…,𝑗𝑖}⊂{1,2,…,𝑁𝑚}

}
𝑁𝑚

𝑖=1
=

1

𝜇 − 𝜆/𝑁𝑚
∑ {(−1)𝑖+1

1

𝑖
(

𝑁𝑚

𝑖
)}

𝑁𝑚

𝑖=1
,

when 𝑁𝑚 is the parameter, it is equivalent with Eq. (46). □

Figure 7-1 shows the existence of a knee point for the optimal number of mapper nodes in

a heterogeneous datacenter. In this result, we have different nodes with uniform service rates of 1,

0.9, 0.8, and 0.7. The number of nodes is varied between 40 and 200. Also, the arrival rate is 10

and offset time is set to 3.5.

Lemma 11: Given Def.5 for homogeneous mapper nodes with 𝜇 as the service rate and 𝜆 as the

total arrival rate to the system, the optimal number of mapper nodes is equal to the minimum of the

following function with respect to 𝑛:

𝑓(𝑛) =
1

𝜇 −
𝜆
𝑛

[𝐻𝑛 + ((∑ (
𝑛
𝑖

) (−1)𝑖+1 ∑ (
𝑖
𝑗
)

(𝑗 − 1)!

𝑖𝑗+1

𝑖

𝑗=1

𝑛

𝑖=1
) − 𝐻𝑛)

𝜆

𝑛𝜇
] (47)

where 𝐻𝑛 = ∑ 1/𝑖𝑛
𝑖=1 .

Proof. This is a direct result of the approximation of MST [36] based on the interpolation of lower

bound and upper bound for low/medium/high traffic and it can be used for a general form

distribution. We can find the optimal number of mappers by refining it as Eq. (47). □

Lemma 12: Given Def.5 for mapper nodes with 𝐾 different service rates, prices, and numbers

as (𝜇1, 𝑃1, 𝑁1), (𝜇2, 𝑃2, 𝑁2), … (𝜇𝐾 , 𝑃𝐾 , 𝑁𝐾), the total arrival rate to the system as 𝜆 and the budget

constraint as 𝐵𝑢𝑑𝑔𝑒𝑡 = ∑ 𝑃𝑖𝑁𝑖
𝐾
𝑖=1 where 𝑁𝑚 = ∑ 𝑁𝑖

𝐾
𝑖=1 , the optimal number of mapper nodes of

each type to minimize MST is equal to the minimum of the following function with respect

to 𝑁1, 𝑁2, … , 𝑁𝐾:

𝑓(𝑁1, … , 𝑁𝐾) =
∑ 𝑁𝑖

𝐾
𝑖=1

∑ (𝑁𝑖𝜇𝑖)𝐾
𝑖=1 − 𝜆

∑ ((−1)𝑖+1 (
𝑁𝑚

𝑖
) /𝑖)

𝑁𝑚

𝑖=1
 (48)

45

Figure 7-1. The comparison of the optimal number of the heterogeneous mapper nodes based on

the MST with 𝑫 = 𝟑. 𝟓.

The proof is straightforward like the proof of Lemma 10. One can derive a similar corollary

for the general case with respect to Lemma 11. Figure 7-2, Figure 7-3 and Figure 7-4 give the

optimal number of low-performance (LP) and high-performance (HP) servers in a heterogeneous

datacenter with a fixed amount of budget for low/medium/high traffic. The service rate ratio and

price ratio of LP to HP are based on [37]. The budget is changed between 2000 and 40000 where

price/service rate for LP servers and HP servers are respectively 400/1 and 800/1.25, and job arrival

rates for low/medium/high traffic are respectively 1/5/25.

40 60 80 100 120 140 160 180 200
7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9
Mean Sojourn Time vs. Number of Mapper Nodes

Number of Mapper Nodes

M
e
a
n
 S

o
jo

u
rn

 T
im

e

Fair Job

Pure-Deterministic

Pure-Stochastic

M-EP

DM-EP

Optimal

46

Figure 7-2. The stack ratio of LP servers to HP servers with respect to Budget in high traffic.

Figure 7-3. The stack ratio of LP servers to HP servers with respect to Budget in medium traffic.

Figure 7-4. The stack ratio of LP servers to HP servers with respect to Budget in low traffic.

0%

20%

40%

60%

80%

100%

1
0

4
0

0

12
0

0
0

1
3

6
0

0

1
5

2
0

0

1
6

8
0

0

1
8

4
0

0

20
0

0
0

2
1

6
0

0

2
3

2
0

0

2
4

8
0

0

2
6

4
0

0

2
8

0
0

0

2
9

6
0

0

3
1

2
0

0

3
2

8
0

0

3
4

4
0

0

3
6

0
0

0

3
7

6
0

0

3
9

2
0

0

of LP Servers # of HP Servers

0%

20%

40%

60%

80%

100%

4
4

0
0

60
0

0

7
6

0
0

9
2

0
0

1
0

8
0

0

1
2

4
0

0

1
4

0
0

0

1
5

6
0

0

1
7

2
0

0

1
8

8
0

0

2
0

4
0

0

2
2

0
0

0

2
3

6
0

0

2
5

2
0

0

2
6

8
0

0

2
8

4
0

0

3
0

0
0

0

3
1

6
0

0

3
3

2
0

0

3
4

8
0

0

3
6

4
0

0

3
8

0
0

0

3
9

6
0

0

of LP Servers # of HP Servers

0%

20%

40%

60%

80%

100%

20
00

36
00

52
00

68
0

0

84
00

10
00

0

11
60

0

13
20

0

14
80

0

16
40

0

18
00

0

19
60

0

21
20

0

22
80

0

24
40

0

26
00

0

27
6

0
0

29
20

0

30
80

0

32
40

0

34
00

0

35
60

0

37
20

0

38
80

0

of LP Servers # of HP Servers

47

Related Work

The mathematical modeling of MapReduce framework has been investigated in several studies

[15,16,17,18]. The main difference between these models and the current study is that the prior

models are not sufficiently rigorous in handing the stragglers problem. Also, most of the published

studies assume deterministic execution times for mappers and reducers. Li et al. [15] introduce an

analytical model for the I/O cost, the number of I/O requests, and the startup cost in Hadoop. They

also propose a hash-based mechanism to allow incremental processing and in-memory processing

of frequent keys investigating the best merge factor for the jobs larger than memory size.

Ananthanarayanan et al. [11] show that the stragglers can slow down small jobs by as much

as 47%. They propose a system called Dolly for cloning small jobs. They also claim that a delay

assignment can improve resource contention initiated by cloning. However, their method does not

work for stragglers of large tasks. Ahmad et al. [16] propose an analytical model of MapReduce to

minimize the execution time and find the optimal map granularity. In comparison, Karloff et al.

[17] present a performance model to estimate the cost of map and reduce functions in MapReduce.

However, the model assumes all mappers finish at the same time and they do not consider the

stochastic behavior of the execution times of the mappers and reducers. Krevat et al. [18] proposed

a simple analytical model for MapReduce and compared the performance of MapReduce with other

similar frameworks in good conditions.

LATE [7] tries to optimize MapReduce job performance in a heterogeneous cluster by

restarting slow tasks in fast mapper nodes. Tarazu [12] addresses the poor performance of

MapReduce in heterogeneous clusters and shows that the traffic contention between the remote

tasks is the main problem in heterogeneous clusters. Motivated by this, they propose a

communication-aware and dynamic load balancing technique to reduce the network traffic

48

contention between the remote tasks and the shuffling stage. SkewTune [19] interactively manages

the skew in non-uniform input data at runtime. It finds an idle server in the cluster and assigns a

slow task to that node. Ananthanarayanan et al. [8] discuss the main causes of the outliers

(stragglers) and propose Mantri to restart or duplicate the task at the beginning of its lifetime.

Scarlett [13] replicates popular blocks across different memory components to reduce interference

with the running jobs.

Also, detailed analysis of various workloads [9] such as OpenCloud, M45 and WebMining,

show highest task duration (stragglers runtime) to median task duration has a nearly long-tailed

distribution. Similarly, Chen et al. [10] evaluate the task lengths for Cloudera and Facebook

workloads and derive similar conclusions. Tan et al. [20] propose a coupling scheduler in

MapReduce based on an analytical approach, and show its performance has a lower exponent as a

power-law distribution than FIFO and fair schedulers. They extend their work [21] by upgrading

reducers as a multi-server queue. Lin et al. [22] address the challenge of overlapping map and

shuffle in MapReduce. They demonstrate that the optimal solution is NP-hard in the offline mode,

and suggest MaxSRPT and SplitSRPT schedulers for the online mode, reaching optimal

scheduling. Condie et al. [23] modify the framework to support pipelining between map/shuffle

and reduce phases. There are some compiler-based structures [24,25] for SQL-like queries in the

MapReduce framework to speedup computations on large data sets. They study a computational

DAG (directed acyclic graph) representation of large queries and require multiple rounds of

MapReduce for their optimizations to be effective. A deadline-aware scheduler has been proposed

by Li et al. [26] to practically address scheduling of deadline-sensitive jobs in a satisfactory range.

49

Concluding Remarks

Targeting MapReduce applications, in this thesis, we model the service time of mapper nodes as a

single queue with the delayed tailed distribution (DTD), and also show that their completion time

has a similar behavior. Next, using this analytical result, we model the map phase of a MapReduce

job and formulate the mean sojourn time (MST) at a reducer node by means of task arrival rates

and service rates of mapper nodes. MST is a potential metric for optimizing end-to-end delay in a

MapReduce framework. Based on different types of inter-arrivals and service rates, we optimize

the MST parameter and investigate the advanced schedulers based on the equilibrium property for

different types of queues in a heterogeneous datacenter. Our results show that the optimal stochastic

scheduler is better than any deterministic scheduler, and it gives the optimal mapping of the job

and the number of mappers.

50

References

[1] T. Gunarathne, W. Tak-Lon, J. Qiu, G. Fox, “MapReduce in the clouds for science,” 2nd IEEE

Conference on Cloud Computing Technology and Science, CloudCom-2010, pp. 565–572,

2010.

[2] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar, M. Shah, R. Tewari, “Cloud

analytics: Do we really need to reinvent the storage stack?,” In Proc. of the HotCloud

Workshop, San Diego, 2009.

[3] R. L. Grossman, "The Case for Cloud Computing," IT Professional, vol.11, no.2, pp.23-27,

March-April 2009.

[4] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” In Proc.

of the 6th Symposium on Operating Systems Design and Implementation, San Francisco CA,

2004.

[5] K. Shvachko, H. Huang, S. Radia, R. Chansler, “The hadoop distributed file system,” in Proc.

of the 26th IEEE (MSST2010) Symposium on Massive Storage Systems and Technologies,

2010.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, “Dryad: distributed data-parallel programs

from sequential building blocks,” In Proc. of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007 (EuroSys '07), 2007.

[7] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, “Improving MapReduce

Performance in Heterogeneous Environments,” In USENIX OSDI, 2008.

[8] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, E. Harris, “Reining

in the outliers in map-reduce clusters using Mantri,” In Proc. of the 9th USENIX OSDI

Symposium, 2010.

[9] K. Ren, Y. Kwon, M. Balazinska, B. Howe, “Hadoop’s adolescence: a comparative workload

analysis from three research clusters,” Tech. Report UW-CSE-12-06-01, University of

Washington, 2012.

[10] Y. Chen, S. Alspaugh, R. H. Katz, “Design insights for MapReduce from diverse production

workloads,” Technical Report UCB/EECS-2012-17, EECS Dep., University of California,

Berkeley, 2012.

51

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, “Effective straggler mitigation: attack

of the clones,” In Proc. of the 10th Symp. on Networked Systems Design and Implementation

(NSDI), 2013.

[12] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N. Vijaykumar, “Tarazu: optimizing

mapreduce on heterogeneous clusters,” In Proc. of the 17th ASPLOS Conf., 2012.

[13] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, E. Harris,

“Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters,” In ACM EuroSys,

2011.

[14] H. Karloff, S. Suri, S. Vassilvitskii, “A model of computation for MapReduce,” In Proc. ACM-

SIAM Sympos. Discrete Algorithms (SODA), pp. 938–948, 2010.

[15] B. Li, E. Mazur, Y. Diao, A. McGregor, P. Shenoy, “A Platform for Scalable One-Pass

Analytics using MapReduce,” In Proceedings of ACM SIGMOD Conf., 2011.

[16] X. Yang, J. Sun, “An analytical performance model of mapreduce,” In Proc. of Cloud

Computing and Intelligence Systems (CCIS), 2011.

[17] X. Lin, Z. Meng, C. Xu, M. Wang, “A practical performance model for hadoop mapreduce,”

In Proc. Of CLUSTER Workshops, 2012.

[18] E. Krevat, T. Shiran, E. Anderson, J. Tucek, J.J. Wylie, G.R. Ganger, “Applying Performance

Models to Understand Data-intensive Computing Efficiency,” Technical Report CMU-PDL-

10-108, Carnegie Mellon University, Pittsburgh, 2010.

[19] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, “SkewTune: Mitigating skew in MapReduce

applications,” In Proc. of SIGMOD Conf., pages 25–36, 2012.

[20] J. Tan, X. Meng, L. Zhang, “Delay tails in MapReduce scheduling,” in Proc. of the

SIGMETRICS/PERFORMANCE Conf., 2012.

[21] J. Tan, Y. Wang, W. Yu, and L. Zhang, “Non-work-conserving effects in MapReduce:

diffusion limit and criticality,” In Proc. of the 14th ACM SIGMETRICS, Austin, Texas, USA,

2014.

[22] M. Lin, J. Tan, A. Wierman, L. Zhang, “Joint optimization of overlapping phases in

MapReduce,” Performance Evaluation, 2013.

[23] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmleegy, and R. Sears, “Mapreduce

online,” In Proc. of NSDI, 2010.

52

[24] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou, “Scope: Easy

and efficient parallel processing of massive data sets,” In Proc. of VLDB, 2008.

[25] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R.

Murthy, “Hive - a warehousing solution over a MapReduce framework,” PVLDB, vol.2, no.2,

pp. 1626–1629, 2009.

[26] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, R. Pace. "WOHA: Deadline-Aware

MapReduce Workflow Scheduling Framework over Hadoop Cluster," In Proc. of 34th

International Conference on Distributed Computing Systems (ICDCS), 2014.

[27] V.A. Saletore, K. Krishnan, V. Viswanathan, M.E. Tolentino, “HcBench: Methodology,

Development, and Characterization of a Customer Usage Representative Big Data/Hadoop

Benchmark,” IEEE International Symposium on Workload Characterization, 2013.

[28] M. A. Marsan, G. Chiola, “On Petri Nets with Deterministic and Exponentially Distributed

Firing Times,” Advances in Petri Nets, LNCS, vol. 266, Springer, pp. 132-145, 1987.

[29] A. Feldmann, W. Whitt, "Fitting mixtures of exponentials to long-tail distributions to analyze

network performance models", In Proc. of IEEE INFOCOM, 1997.

[30] J. Li , Y.S. Fan, M.C. Zhou, "Performance modeling and analysis of workflow," IEEE Trans.

on Systems, Man, Cybernetics—Part A: Systems and Humans, vol. 34, no. 2, pp. 229-242,

2004.

[31] R. B. J. T. Allenby and A. B. Slomson, “How to count: An introduction to combinatorics,” 2nd

ed. CRC Press, pp. 51-60, 2011.

[32] B. Kemper, M. Mandjes, "Mean sojourn times in two-queue fork-join systems: bounds and

approximations," OR Spectrum 34(3), 2012.

[33] A. S. Lebrecht, W. J. Knottenbelt, "Response Time Approximations in Fork-Join Queues," in

Proc. of the 23rd UK Performance Engineering Workshop (UKPEW), July, 2007.

[34] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, “COTSon: infrastructure for

full system simulation,” ACM SIGOPS Operating Systems Review, v.43 n.1, Jan 2009.

[35] A. Kaw, E. Kalu, "Numerical Methods with Applications," Holistic Numerical Methods

Institute, Dec. 2008.

[36] A. Makowski, S. Varma, “Interpolation approximations for symmetric fork-join queues,”

Performance Evaluation, vol.20, 145-165, 1994.

53

[37] V. J. Reddi, B. Lee, T. Chilimbi, K. Vaid, “Web Search Using Mobile Cores: Quantifying and

Mitigating the Price of Efficiency,” in Proc. of ISCA, 2010.

[38] D. Gross, J. F. Shortle, J. M. Thompson, C. M. Harris, “Fundamentals of Queueing Theory,”

4th ed. John Wiley&Sons, 2008.

[39] S. Kavulya, J. Tany, R. Gandhi, P. Narasimhan, “An analysis of traces from a production

mapreduce cluster,” In 10th IEEE/ACM CCGrid, pages 94–103, 2010.

[40] Y. Chen, S. Alspaugh, and R. H. Katz, “Design insights for mapreduce from diverse production

workloads,” Technical Report UCB/EECS-2012-17, EECS Dept, University of California,

Berkeley, Jan 2012.

[41] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu, “GRASS:

Trimming Stragglers in Approximation Analytics,” In Proceedings of the USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2014.

[42] S. Nadarajah, S. Kotz, “The generalized Pareto sum,” HYDROLOGICAL PROCESSES 22,

doi:10.1002/hyp.6602, pp.288–294, 2008.

[43] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and

M. Sridharan, “DCTCP: Efficient packet transport for the commoditized data center,” In

SIGCOMM, 2010.

[44] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, Vol. 56 No. 2,

pp.74-80, 2013.

[45] E. Lazowska, J. Zahorjan, G. Graham, K. Sevcik, “Quantitative System Performance:

Computer System Analysis Using Queueing Network Models,” Prentice-Hall, Englewood

Cliffs, NJ, 1984.

[46] J. F. C. Kingman, “The single server queue in heavy traffic,” Proc. Camb. Phil. Soc. 57, pp.

902-904, 1961.

[47] https://hadoop.apache.org/docs/stable/.

[48] http://en.wikipedia.org/wiki/Wikipedia:Database_download.

[49] A. Clauset , C. R. Shalizi , M. E. J. Newman, “Power-Law Distributions in Empirical Data,”

SIAM Review, vol.51 no.4, pp.661-703, 2009.

[50] Farhat, Farshid, Diman Zad Tootaghaj, and Mohammad Arjomand. "Towards Stochastically

Optimizing Data Computing Flows." arXiv preprint arXiv:1607.04334 (2016).

54

[51] Farhat, Farshid, et al. "Stochastic modeling and optimization of stragglers." IEEE Transactions

on Cloud Computing (2016).

[52] Tootaghaj, Diman Zad, et al. "Evaluating the combined impact of node architecture and cloud

workload characteristics on network traffic and performance/cost." Workload characterization

(IISWC), 2015 IEEE international symposium on. IEEE, 2015.

[53] Farhat, F., et al. Modeling and optimization of straggling mappers. Technical report, Technical

Report CSE-14-006, Pennsylvania State University, 2014.

[54] Kotobi, Khashayar, et al. "Data-throughput enhancement using data mining-informed cognitive

radio." Electronics 4.2 (2015): 221-238.

[55] Kotobi, Khashayar, and Sven G. Bilen. "Introduction of vigilante players in cognitive networks

with moving greedy players." Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd.

IEEE, 2015.

[56] Kotobi, Khashayar, Philip B. Mainwaring, and Sven G. Bilen. "Puzzle-based auction

mechanism for spectrum sharing in cognitive radio networks." Wireless and Mobile

Computing, Networking and Communications (WiMob), 2016 IEEE 12th International

Conference on. IEEE, 2016.

55

Appendix

The proofs of the lemmas

A: Proof of Lemma 1

The random variable of waiting time (𝑇𝑊) can be written as the summation of partial waiting times

of the requests in the queue (𝑄1, 𝑄2, … , 𝑄𝑛). Then we have:

𝑇𝑊𝑛
= 𝑄1 + 𝑄2 + ⋯ + 𝑄𝑛 (49)

where 𝑄𝑖‘s distribution is DTD for 𝑖 ∈ {1, … , 𝑛}, i.e.:

𝑃𝑞 = 𝑃(𝑄𝑖 = 𝑡) = Λ′(𝑡 − 𝑇)𝑒−Λ(𝑡−𝑇)𝑈(𝑡 − 𝑇) (50)

= (a +
b

t + 1 − T
) 𝑒−Λ(𝑡−𝑇)𝑈(𝑡 − 𝑇) (51)

= (a + b/(t + 1))𝑒−Λ(𝑡)𝑈(𝑡) ∗ 𝛿(𝑡 − 𝑇) (52)

where Λ(𝑡) = 𝑎𝑡 + 𝑏 ln(𝑡 + 1), 𝑈(𝑡) is unit step function, 𝛿(𝑡) is Dirac delta function, and ∗ is the

convolution sign, 𝑇 = 1/𝐶𝜇 is very small as mentioned before. So LST (Laplace–Stieltjes

transform) of 𝑃𝑛 is as follows:

𝐿𝑆𝑇{𝑃𝑛 = 𝑃(𝑇𝑊𝑛
= 𝑡)} = (𝐿𝑆𝑇{𝑃(𝑄𝑖 = 𝑡)})𝑛 = (𝐿𝑆𝑇{𝑃𝑞})

𝑛
 (53)

= (𝐿𝑆𝑇 {(a +
b

t + 1
) 𝑒−Λ(𝑡)𝑈(𝑡) ∗ 𝛿(𝑡 − 𝑇)})

𝑛

 (54)

= 𝑒−𝑛𝑇𝑠 (𝐿𝑆𝑇 {(a +
b

t + 1
) 𝑒−Λ(𝑡)𝑈(𝑡)})

𝑛

 (55)

= 𝑒−𝑛𝑇𝑠(aG(s + a, b) + bG(s + a, b + 1))𝑛 (56)

where 𝐺(𝑠, 𝑏) = LST{(𝑡 + 1)−𝑏𝑈(𝑡)}. In other words, by induction on the result in Theorem1.1

[42], it can be shown that 𝑇𝑊𝑛
 has a delayed Erlang-like DTD for sum of two generalized Pareto

distribution, as we have:

56

𝑃𝑛 = 𝑃(𝑇𝑊𝑛
= 𝑡) = 𝑃(𝑄1 = 𝑡) ∗ 𝑃(𝑄2 = 𝑡) ∗ … ∗ 𝑃(𝑄𝑛 = 𝑡) (57)

Also the steady-state arrival point distribution is a sequence {𝑞𝑛}𝑛=0
∞ which can be derived

dynamically by 𝑞𝑛 = ∑ 𝑞𝑛−1+𝑖
∞
𝑖=0 𝛽𝑖 where 𝛽𝑖 = ∫ 𝑃𝑖

∞

𝑡=0
𝑓𝐴(𝑡)𝑑𝑡 and 𝑓𝐴(𝑡) is inter-arrival time

distribution. So 𝑞𝑛 is bounded by some geometric sequences as 𝑞0𝑞𝑙
𝑛−1 ≤ 𝑞𝑛 ≤ 𝑞0𝑞ℎ

𝑛−1; 𝑛 ∈ ℕ.

Now we can find the LST of the distribution of the sojourn time by getting the expected

value of 𝑃𝑛 over all state probabilities (𝑞𝑛) of the queue as follows:

𝐿𝑆𝑇{𝑀𝑆𝑇} = LST{E{𝑃𝑛}} = E{LST{Pn}} = ∑ 𝐿𝑆𝑇{𝑞𝑛𝑃𝑛}
∞

𝑛=1

which is bounded by:

∑ 𝐿𝑆𝑇{𝑞0𝑞𝑙
𝑛𝑃𝑛}

𝑛
≤ ∑ 𝐿𝑆𝑇{𝑞𝑛𝑃𝑛}

𝑛
≤ ∑ 𝐿𝑆𝑇{𝑞0𝑞ℎ

𝑛𝑃𝑛}
𝑛

∑ 𝐿𝑆𝑇{𝑞0𝑞𝑙
𝑛𝑃𝑛}

𝑛
≤ ∑ 𝐿𝑆𝑇{𝑞𝑛𝑃𝑛}

𝑛
≤ ∑ 𝐿𝑆𝑇{𝑞0𝑞ℎ

𝑛𝑃𝑛}
𝑛

𝑞0𝐿𝑆𝑇{𝑃𝑞}

1 − 𝑞𝑙𝐿𝑆𝑇{𝑃𝑞}
≤ ∑ 𝐿𝑆𝑇{𝑞𝑛𝑃𝑛}

𝑛
≤

𝑞0𝐿𝑆𝑇{𝑃𝑞}

1 − 𝑞ℎ𝐿𝑆𝑇{𝑃𝑞}

Also we have:

𝛿(𝑡 − 𝑇) = 𝐿𝑆𝑇−1 {(
𝛼

𝛼 + 𝑠
)

𝛼𝑇

}
𝛼→∞

 (58)

Using Eq. (50-57), the distribution of waiting time asymptotically tends to the linear combination

of some generalized Pareto distribution or some DTDs. □

B: Proof of Lemma 5

The completion time of 𝑖𝑡ℎ mapper node as a function of its service rate 𝜇𝑖 and arrival rate 𝜆𝑖

is (1 − 𝑒−(𝜇𝑖−𝜆𝑖)𝑡). Then MST will be:

𝑀𝑆𝑇 = ∫ 𝑡
𝜕

𝜕𝑡
(∏ (1 − 𝑒−(𝜇𝑖−𝜆𝑖)𝑡)

𝑁𝑚

𝑖=1
) 𝑑𝑡

∞

0

, (59)

Based on the equilibrium property (Def.4) we have:

57

∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}:
𝜕𝑀𝑆𝑇

𝜕𝜆𝑖
=

𝜕𝑀𝑆𝑇

𝜕𝜆𝑗

↔ ∫ 𝑡
𝜕

𝜕𝑡
(∏

𝜕

𝜕𝜆𝑖
(1 − 𝑒−(𝜇𝑖−𝜆𝑖)𝑡)

𝑁𝑚

𝑖=1
) 𝑑𝑡

∞

0

= ∫ 𝑡
𝜕

𝜕𝑡
(∏

𝜕

𝜕𝜆𝑗
(1 − 𝑒−(𝜇𝑗−𝜆𝑗)𝑡)

𝑁𝑚

𝑖=1
) 𝑑𝑡

∞

0

←
𝜕

𝜕𝜆𝑖
(1 − 𝑒−(𝜇𝑖−𝜆𝑖)𝑡) =

𝜕

𝜕𝜆𝑗
(1 − 𝑒−(𝜇𝑖−𝜆𝑖)𝑡) ← 𝑡𝑒−(𝜇𝑖−𝜆𝑖)𝑡 = 𝑡𝑒−(𝜇𝑗−𝜆𝑗)𝑡 ← 𝜇𝑖 − 𝜆𝑖 = 𝜇𝑗 − 𝜆𝑗

Now we have:

𝜇1 − 𝜆1 = 𝜇2 − 𝜆2 = ⋯ = 𝜇𝑁𝑚
− 𝜆𝑁𝑚

= (∑ 𝜇𝑗

𝑁𝑚

𝑗=1
− 𝜆) /𝑁𝑚

Then we have:

𝜆𝑖 = 𝜇𝑖 −
∑ 𝜇𝑗

𝑁𝑚
𝑗=1 − 𝜆

𝑁𝑚

Having 𝜆𝑖 > 0 ; ∀𝑖 then we have:

𝑚𝑖𝑛(𝜇1, 𝜇2, … , 𝜇𝑁𝑚
) = 𝜇𝑚𝑖𝑛 >

∑ 𝜇𝑗
𝑁𝑚
𝑗=1 −𝜆

𝑁𝑚
. □

C: Proof of Lemma 6

The CDF of completion time of the 𝑖𝑡ℎ mapper as a function of 𝐴𝑖(t) (inter-arrival time CDF) and

service rate 𝜇𝑖 is 1 − 𝑒−𝜇𝑖(1−𝑟0𝑖)𝑡 where 𝑟0𝑖
 is the unique real root of z = 𝐴𝑖

∗[𝜇𝑖(1 − 𝑧)] in (0,1)

and 𝐴𝑖
∗ is the LST (Laplace–Stieltjes transform) of 𝐴𝑖(t) [38]. Based on Lemma 7, Eq. (28) and

similarity to M/M/1 form (Lemma 5), we have:

∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}: 𝐹𝑅𝑀𝑖
(𝑡) = 𝐹𝑅𝑀𝑗

(𝑡) ← 1 − 𝑒−𝜇𝑖(1−𝑟0𝑖)𝑡 = 1 − 𝑒
−𝜇𝑗(1−𝑟0𝑗)𝑡

← 𝜇𝑖(1 − 𝑟0𝑖
) = 𝜇𝑗(1 − 𝑟0𝑗

). □

D: Proof of Lemma 7

From Eq. (14), the MST definition is 𝑀𝑆𝑇 = ∫ 𝑡
𝜕

𝜕𝑡
(∏ 𝐹𝑅𝑀𝑖

(𝑡)𝑁𝑚
𝑖=1) 𝑑𝑡

∞

0
. From Eq. (16) of Def.4,

we have the following EP:

58

∀𝑖, 𝑗 ∈ {1,2, … , 𝑁𝑚}:
𝜕𝑀𝑆𝑇

𝜕𝜆𝑖
=

𝜕𝑀𝑆𝑇

𝜕𝜆𝑗

↔ ∫ 𝑡
𝜕

𝜕𝑡
(𝐹𝑅𝑀1

(𝑡)𝐹𝑅𝑀2
(𝑡) … 𝐹𝑅𝑀𝑖−1

(𝑡) [
𝜕

𝜕𝜆𝑖
𝐹𝑅𝑀𝑖

(𝑡)] 𝐹𝑅𝑀𝑖+1
(𝑡) … 𝐹𝑅𝑀𝑁𝑚

(𝑡)) 𝑑𝑡
∞

0

= ∫ 𝑡
𝜕

𝜕𝑡
(𝐹𝑅𝑀1

(𝑡)𝐹𝑅𝑀2
(𝑡) … 𝐹𝑅𝑀𝑗−1

(𝑡) [
𝜕

𝜕𝜆𝑗
𝐹𝑅𝑀𝑗

(𝑡)] 𝐹𝑅𝑀𝑗+1
(𝑡) … 𝐹𝑅𝑀𝑁𝑚

(𝑡)) 𝑑𝑡
∞

0

↔ ∫ 𝑡
𝜕

𝜕𝑡
(

1

𝐹𝑅𝑀𝑖

𝜕

𝜕𝜆𝑖
𝐹𝑅𝑀𝑖

(𝑡) ∏ 𝐹𝑅𝑀𝑘
(𝑡)

𝑁𝑚

𝑘=1
) 𝑑𝑡

∞

0

= ∫ 𝑡
𝜕

𝜕𝑡
(

1

𝐹𝑅𝑀𝑗

𝜕

𝜕𝜆𝑗
𝐹𝑅𝑀𝑗

(𝑡) ∏ 𝐹𝑅𝑀𝑘
(𝑡)

𝑁𝑚

𝑘=1
) 𝑑𝑡

∞

0

←
1

𝐹𝑅𝑀𝑖

𝜕

𝜕𝜆𝑖
𝐹𝑅𝑀𝑖

(𝑡) =
1

𝐹𝑅𝑀𝑗

𝜕

𝜕𝜆𝑗
𝐹𝑅𝑀𝑗

(𝑡)

So it can be inferred that Eq. (28) is a sufficient condition to have an optimal solution. For

the second condition in Eq. (29) we will show that any deviation from the distributions’ equality

may increase MST. The proof is dedicated to two different distributions that can be easily

generalize to any number by induction, so we have:

𝑀𝑆𝑇 = ∫ 𝑡
𝜕

𝜕𝑡
(∏ 𝐹𝑖(𝑡)

2

𝑖=1
) 𝑑𝑡

∞

0

= ∫ 𝑡
𝜕

𝜕𝑡
(𝐹1𝐹2)𝑑𝑡

∞

0

 (60)

Any 𝜀-deviation from the distributions equilibrium can be written as follows:

𝜆1 + 𝜆2 = (𝜆1 + 𝜀) + (𝜆2 − 𝜀) = 𝜆

𝐹(𝑡) = 𝐹1(𝑡, 𝜆1) = 𝐹2(𝑡, 𝜆2) 𝑜𝑟 𝐹 = 𝐹1(𝜆1) = 𝐹2(𝜆2)

𝑑

𝑑𝑡
𝐹(𝑡) = 𝑓(𝑡) = 𝑓1(𝑡, 𝜆1) = 𝑓2(𝑡, 𝜆2) 𝑜𝑟 𝑓 = 𝑓1(𝜆1) = 𝑓2(𝜆2)

We have to show that:

59

𝑀𝑆𝑇(𝜆1, 𝜆2) = ∫ 𝑡(𝑓1(𝜆1)𝐹2(𝜆2) + 𝑓2(𝜆2)𝐹1(𝜆1))𝑑𝑡
∞

0

≤ 𝑀𝑆𝑇(𝜆1 + 𝜀, 𝜆2 − 𝜀)

= ∫ 𝑡(𝑓1(𝜆1 + 𝜀)𝐹2(𝜆2 − 𝜀) + 𝑓2(𝜆2 − 𝜀)𝐹1(𝜆1 + 𝜀))𝑑𝑡
∞

0

Equivalently:

∆𝑀𝑆𝑇 = 𝑀𝑆𝑇(𝜆1 + 𝜀, 𝜆2 − 𝜀) − 𝑀𝑆𝑇(𝜆1, 𝜆2)

= ∫ 𝑡(𝑓1(𝜆1 + 𝜀)𝐹2(𝜆2 − 𝜀) + 𝑓2(𝜆2 − 𝜀)𝐹1(𝜆1 + 𝜀))𝑑𝑡
∞

0

− 2 ∫ 𝑡𝑓𝐹𝑑𝑡
∞

0

≥ 0

We can write Taylor’s series of the new deviated distributions as:

𝐹1(𝑡, 𝜆1 + ε) = 𝐹 +
𝐹1

′(𝜆1)

1!
𝜀 +

𝐹1
′′(𝜆1)

2!
𝜀2 + ⋯ = 𝐹 + 𝜀𝐹1

′(𝜉1)

 𝐹2(𝑡, 𝜆2 − ε) = 𝐹 −
𝐹2

′(𝜆2)

1!
𝜀 +

𝐹2
′′(𝜆2)

2!
𝜀2 + ⋯ = 𝐹 − 𝜀𝐹2

′(𝜉2)

where ∃𝜉1, 𝜉2: 𝜆1 ≤ 𝜉1 ≤ 𝜆1 + 𝜀, 𝜆2 ≤ 𝜉2 ≤ 𝜆2 + 𝜀 and second equalities come from the Mean

Value Theorem. Now the difference of two above distribution is as follows:

∆MST = ∫ 𝑡 ((𝑓 + 𝜀𝑓1
′(𝜉1))(𝐹 − 𝜀𝐹2

′(𝜉2)) + (𝑓 − 𝜀𝑓2
′(𝜉2))(𝐹 + 𝜀𝐹1

′(𝜉1))) 𝑑𝑡
∞

0

− 2 ∫ 𝑡𝑓𝐹𝑑𝑡
∞

0

Then, approximating the difference by ignoring higher order 𝜀, we have:

∆𝑀𝑆𝑇 ≅ ∫ 𝑡(−𝜀𝑓𝐹2
′ + 𝜀𝑓1

′𝐹 + 𝜀𝑓𝐹1
′ − 𝜀𝑓2′𝐹)𝑑𝑡

∞

0

= 𝜀
𝑑

𝑑𝜆
(∫ 𝑡𝑓𝐹𝑑𝑡

∞

0

)
𝜉2

𝜉1

We know that MST is a monotonically increasing function with respect to 𝜆, as MST is a

notion of aggregated completion time. Thus, the difference value is non-negative. Also Eq. (30)

and Eq. (31) are other representations of the CDF in Eq. (29), as the equality of moment-generating

functions is equivalent with the equality of the LST of distributions. □

E: Proof of Lemma 9

Given random variable 𝑋, convex function Φ(𝑋), and expected value operation 𝐸{. } the Jensen

inequality states:

60

Φ(𝐸{𝑋}) ≤ 𝐸{Φ(𝑋)}

Since we know that max (𝑋) is a convex function, from the above inequality and (7) we have:

𝑀𝑆𝑇 = 𝐸 {𝑚𝑎𝑥 (𝑅𝑀1
, 𝑅𝑀2

, … , 𝑅𝑀𝑁𝑚
)} ≥ 𝑚𝑎𝑥 (𝐸{𝑅𝑀1}, 𝐸{𝑅𝑀2}, … , 𝐸 {𝑅𝑀𝑁𝑚

})

which gives the lower bound of MST. The minimum value of the lower bound is achieved when

the mean completion times are equal, because:

min (𝑚𝑎𝑥 (𝐸{𝑅𝑀1}, 𝐸{𝑅𝑀2}, … , 𝐸 {𝑅𝑀𝑁𝑚
})) = 𝐸{𝑅𝑀𝑖}; ∀𝑖

Equivalently, it is similar to a mini-max strategy in game theory when the elements are

continuously bounded, and the solution happens when all elements are equal. Or, it can be assumed

that there are 𝑝1, 𝑝2, …, 𝑝𝑁𝑚 probabilities where ∑ 𝑝𝑁𝑚
𝑁𝑚
𝑖=1 = 1 and:

𝑚𝑎𝑥 (𝐸{𝑅𝑀1}, 𝐸{𝑅𝑀2}, … , 𝐸 {𝑅𝑀𝑁𝑚
}) = 𝑝1𝐸{𝑅𝑀1} + 𝑝2𝐸{𝑅𝑀2} + ⋯ + 𝑝𝑁𝑚𝐸 {𝑅𝑀𝑁𝑚

}

Using the Lagrange Multipliers method, the minimum of the above cost function as lower bound

occurs when the mean completion times are the same as Eq. (37). For the upper bound from (9),

we have:

𝑀𝑆𝑇 = ∑ ∫ 𝑡
∞

0

∏ 𝐹𝑅𝑀𝑖
(𝑡)

𝑁𝑚

𝑖=1

𝑓𝑅𝑀𝑗
(𝑡)

𝐹𝑅𝑀𝑗
(𝑡)

𝑁𝑚

𝑗=1
𝑑𝑡 = ∑ ∫ 𝑡

∏ 𝐹𝑅𝑀𝑖
(𝑡)𝑁𝑚

𝑖=1

𝐹𝑅𝑀𝑗
(𝑡)

𝑓𝑅𝑀𝑗
(𝑡)𝑑𝑡

∞

0

𝑁𝑚

𝑗=1

= ∑ ∫ 𝑡𝑃𝑗(𝑡)𝑓𝑅𝑀𝑗
(𝑡)𝑑𝑡

∞

0

𝑁𝑚

𝑗=1
,

where the multiplicative function is less than one because:

𝑃𝑗(𝑡) =
∏ 𝐹𝑅𝑀𝑖

(𝑡)𝑁𝑚
𝑖=1

𝐹𝑅𝑀𝑗
(𝑡)

= 𝐹𝑅𝑀1
(𝑡)𝐹𝑅𝑀2

(𝑡) … 𝐹𝑅𝑀𝑗−1
(𝑡)𝐹𝑅𝑀𝑗+1

(𝑡) … 𝐹𝑅𝑀𝑁𝑚
(𝑡) ≤ 1

So, we have:

𝑀𝑆𝑇 = ∑ ∫ 𝑡𝑃𝑗(𝑡)𝑓𝑅𝑀𝑗
(𝑡)𝑑𝑡

∞

0

𝑁𝑚

𝑗=1
≤ ∑ ∫ 𝑡𝑓𝑅𝑀𝑗

(𝑡)𝑑𝑡
∞

0

𝑁𝑚

𝑗=1
= ∑ 𝐸{𝑅𝑀𝑖}

𝑁𝑚

𝑖=1
,

61

which gives the upper bound of MST. Using the method of Lagrange multipliers, the minimum of

the upper bound happens when:

𝑑

𝑑𝜆𝑖
𝐸{𝑅𝑀𝑖} − 𝛼 = 0; ∀𝑖

which is equivalent to Eq. (38). □

