
Shape Matching using Skeleton Context for Automated Bow Echo Detection

Mohammad Mahdi Kamani†, Farshid Farhat†, Stephen Wistar‡, and James Z. Wang†
†The Pennsylvania State University ‡Accuweather Inc.

Abstract—Severe weather conditions cause enormous
amount of damages around the globe. Bow echo patterns in
radar images are associated with a number of these destructive
conditions such as damaging winds, hail, thunderstorms, and
tornadoes. They are detected manually by meteorologists. In
this paper, we propose an automatic framework to detect these
patterns with high accuracy by introducing novel skeletoniza-
tion and shape matching approaches. In this framework, first
we extract regions with high probability of occurring bow echo
from radar images, and apply our skeletonization method to
extract the skeleton of those regions. Next, we prune these
skeletons using our innovative pruning scheme with fuzzy logic.
Then, using our proposed shape descriptor, Skeleton Context,
we can extract bow echo features from these skeletons in order
to use them in shape matching algorithm and classification step.
The output of classification indicates whether these regions are
bow echo with over 97% accuracy.

Keywords-Radar image, severe weather forecasting, skeleton
pruning, fuzzy logic, big data analytics.

I. INTRODUCTION

Monitoring and storing climatic data around the globe
provide a vast amount of data for weather condition analysis.
In spite of the fact that computational power is emerging
continuously, automatic severe weather forecasting is costly
and not always accurate. Meteorologists leverage various
and complex models to forecast storms using data from
a collection of sensors, including tools and data at the
Storm Prediction Center (SPC) of the National Oceanic and
Atmospheric Administration (NOAA). The data gathered
from these sensors are stored historically; hence it can be
leveraged to extract historical patterns of different severe
weather conditions. Although meteorologists have developed
numerous and complicated models for forecasting storms,
they still rely significantly on their interpretations instead of
automated algorithms. Further, the majority of these models
depend on initial conditions and are highly sensitive to noise,
making forecasting much more difficult. Therefore, it is
inevitable for this field to combine big data, computer vision,
and data mining algorithms with these models to seek faster,
more robust, and more accurate results.

Severe weather conditions consist of thunderstorms, tor-
nadoes, floods, lightning, hail, and strong winds. Each of
these conditions are investigated widely in meteorological
literature, and they need different sources for detection
and forecasting, such as satellite images, radar images,
temperature, air pressure and wind speed, to name but a
few. These events are the primary causes of a large amount

of damage around the globe. For instance, according to the
National Severe Storms Laboratory (NSSL), damaging winds
or straight-line winds are the major causes of nearly half
of all reports of severe weather conditions in the United
States. These winds can reach the speed of 100 miles per
hour and have a damage path up to hundreds of miles. Bow
echoes, convective line segments with an archery bow shape,
are mainly associated with these strong straight-line winds.
In some cases, parts of bow echoes can form tornadoes
and new thunderstorms. Hence, bow echo detection can be
used as a way of forecasting such destructive severe weather
conditions. Accurate and on-time forecasting of these events
seems necessary and would help to mitigate damages.

As Klimowski et al. [1] found 273 cases of bow echoes
between 1996 and 2002, it seems popular among weather
patterns. Their investigations revealed that bow echoes are
causing nearly 33% of severe convectively generated winds
in the U.S. [2]. NSSL in partnership with other organiza-
tions performed a field experiment on bow echoes called
Bow Echo and Mesoscale Convective Vortex Experiment
(BAMEX) to investigate bow echoes and extremely damaging
surface winds with them in more detail [3]. Although,
meteorologists have done lots of research on bow echoes
and their effects [1]–[4], there is no evidence of computer-
aided algorithms in bow echo detection and forecasting in
the literature.

In this paper we propose a new method for detecting bow
echoes in radar images. This bow shape signature of bow
echo leads us to use computer vision algorithms for particu-
lar shape detection and matching. In this regard, we first use
radar images and develop our algorithm for skeletonization,
which then can be used in the shape matching algorithm
through our suggested descriptor, Skeleton Context. Finally,
we use Mixture Discriminant Analysis (MDA) to classify
bow echo shapes in radar images. Our contributions through
this research are as follows:
• Introducing a new skeletonization scheme and some

criteria for ranking of edges in a skeleton.
• Proposing a novel fuzzy logic based approach for

skeleton pruning, which is based on inference systems
that are closely related to the human inference system.
The process is flexible due to the suggested branch
tolerance window. We introduce two fuzzy transforma-
tions of skeletons in the course of pruning them, that
is, Main Skeleton Degree of Belief, and Branch Degree
of Belief.

Figure 1: The complete scheme for automatic bow echo detection. In the first stage, it extracts regions of interest, which
are red parts in radar images. Then in the skeletonization step, it extracts skeleton map of each part, and prunes it using the
proposed algorithm. After finding pruned skeleton, it computes skeleton context and finds the nearest match in the database
of bow echo prototypes. Finally, it uses mixture discriminant analysis classifier to detect whether it is a bow echo or not.

• Introducing a new shape descriptor, based on skeleton
samples of a shape, called skeleton context. Applying a
novel approach on shape matching algorithm, in order
to allow partial shape matching.

In Section II, we describe bow echoes and the dataset.
Then we propose our algorithm for skeletonization and
skeleton pruning, and define Skeleton Context. Section III is
dedicated to classification part and shape matching scheme.
Section IV provides evaluation results for classifying bow
echoes, and finally we conclude in Section V.

II. BOW ECHO FEATURE EXTRACTION

A. Overview
Severe weather conditions such as thunderstorms, tor-

nadoes, hail, and especially strong straight-line winds are
associated with bow echoes. The wind with a bow echo can
be fierce and reach violent intensity.

The term bow echo was coined by Fujita [5], to describe
strong outflow winds associated with storms that spread out
in straight lines over the ground. Przybylinski categorize
bow echoes in two categories [4]:
• Bow echo patterns associated with derechoes or

straight-line winds.
• Bow echo patterns associated with vortices, including

tornadoes,
Klimowski et al. [1] classify different types of bow echoes

and their evolution from meteorologists’ point of view. They
start with a radar echo and then evolve into a bow echo. In
this research, we aim to use this topological feature of these
phenomena to detect them using computational approaches.

Our proposed scheme for detecting bow echoes, shown
in Figure 1, consists of two main steps, skeleton extraction

and matching. In the first step, we take a radar image
and extract its regions of interest (parts that we can find
bow echoes). Then using our skeletonization and skeleton
pruning framework, to extract their skeleton. In the second
step, using our suggested shape descriptor, skeleton context,
to extract features for shape matching part. After matching
those parts to a bow echo prototype, based on the distance
between them and their matched bow echo prototype, we
are able to identify whether they are a bow echo or not.

B. Radar Images and Regions of Interest

Our dataset consists of images from NEXRAD level III
radar of National Weather Service (technical name WSR-
88D), which can measure precipitation and wind movement
in the atmosphere. These images are gathered from 160
active high resolution radar sites around the U.S. continent.
We use base reflectivity images from NEXRAD level III
radar, which represent the amount of returned power to
the radar from transmitted signal after hitting precipitation
in the atmosphere. The images have 4-bit color map with
6, 000× 2, 600 pixels of spatial resolution, which are stored
every five minutes [6]. The color map associated to these
radar images is shown in Figure 2 having the range from
0 dBZ to 75 dBZ for reflectivity. The range of the reflectivity
from 0 dBZ to -30 dBZ, alongside with “No Data” regions
(due to spots with beam blockage in the mountains and
outside of the U.S.) is represented by a black color.

Bow echoes can be spotted in heavy precipitation red
regions on radar images (i.e., with reflectivity of higher than
50 dBZ). As it is shown in Figure 2, the bow echo happened
on May 2 in 2008 over Kansas City. Hence, in searching
for bow echoes in radar images, regions of interest are red

Figure 2: Radar image of the United States Continent with
a bow echo, May 2, 2008, 07:10 GMT. We magnify the part
that bow echo happened (i.e. red regions).

in color (> 50 dBZ). To extract these parts we can set a
threshold on their RGB values, but it would result in patchy
areas and not connected regions. Although human eyes can
cluster them as a unified region, computer algorithms need
to perform a pre-processing in order to connect those parts
together. We use some morphological operations such as
image closing along with active contours to improve the
extraction of the connected components.

C. Skeletonization

Skeleton of a shape is a low-level representation that
can be used for matching and recognition purposes in
various fields of study including image retrieval and shape
matching [7]. Skeleton can provide a good abstraction of
a shape, which contains topological structure and its fea-
tures. Since it is the simplest representation of a shape,
there has been an extensive effort among researchers to
develop generic algorithms for skeletonization of shapes [8]–
[12]. Specifically the vast majority of the algorithms are
based on Blum’s “Grassfire” analogy and formulation for
skeletonization [13] . The most important key factor in
skeletonization algorithms is to preserve the topology of the
shape. One of the most widely used algorithms is based
on measuring the net outward flux by using Euclidean
Distance Transform (EDT) of the binary image followed by
a topology preserving thinning algorithm [11]. We use the
method introduced by Dimitrov et al. [11] to calculate the
net outward flux per unit area and detect the location of the
pixels where conservation of energy principle is violated.
EDT maps a binary image into a gray level image with value
of each pixel represents its euclidean distance to the border
of image. Given Euclidean distance of an image (DE), we
should first compute the gradient vector field (∇DE), and
then the divergence of this vector field [11]. Mathematically,
the divergence of the gradient vector field (∇ · (∇DE)) is
defined as the limit of the net outward flow of the field across
the boundary of the area around the given point, while the
area is shrinking to zero:

∇ · (∇DE) = lim
S→0

∫∫
C

∇DE · ~n
S

dC , (1)

(a) Binary image (b) EDT (c) Flux map

(d) Initial skeleton (e) Graph vertices (f) Graph edges

Figure 3: Different stages in the skeletonization process.

where C is the boundary, S is the area, and ~n is the normal
vector of the boundary. Hence, we can calculate net outward
flux at each point P = (x, y) as follow:

Flux(P) =

8∑
i=1

∇DE(Qi) · ~n , (2)

where Qi’s are neighbor points to point P . According to the
direction of the normal vector, we can determine that positive
or negative flux values are representing drain or source of
energy, where energy-draining points are internal skeletal
points, and energy-generating points are external skeletal
points. In the Figure 3b, the EDT of the binary image, in
Figure 3a, is shown. Then, in Figure 3c the net outward flux
for this Euclidean distance transform is computed.

Setting a threshold on flux values, initial binary skeleton
map can be computed as depicted in Figure 3d. Since
we are dealing with highly boundary-variant shapes, the
skeleton map would contain a large number of unwanted
branches that make the subsequent matching steps compli-
cated. We need to develop an automated method to remove
all such branches while keeping the main skeleton intact.
We introduce a new method to prune the skeleton using
fuzzy logic, which will be discussed in the next section.
Our pruning algorithm needs to have the complete graph
information of the skeleton including its vertices and edges’
pixels coordinates. Therefore, the skeleton map is converted
to a graph before the pruning step. To convert a skeleton
map to a graph, we start finding vertices in the map. Hence,
for each skeleton point on the map we find 8-connected
neighbors.Then in each 3 × 3 matrix of neighbors, we

construct the graph of pixels , in which pixels with binary
value of 1 are vertices. In this graph, edges represent the
connection of vertices with their neighbors in 4-connected
positions. Next, we find the Euler characteristic of this graph,
which is number of vertices minus number of edges in a 2D
graph. If Euler characteristic is greater than two, the point
is a branch point, and if it is equal to one the point is an
end point. Vertices extracted in this way for the skeleton in
Figure 3d, is depicted (with a magnified part for a better
representation) in Figure 3e. Red points in the image are
branch points, and green ones are end points.

After finding vertices in the graph, we should form the
edge list of the graph. We start with a random end point
and traverse its neighbors to reach a branch point or other
endpoints. If the neighbor pixel is not a branch point nor an
endpoint, it would be added to the current edge’s pixel list.
When we reach a branch point, we should add another edge
to the edge list, having that branch point as its first point,
and start searching edge points for the next edge in the edge
list. If we reach an end point, we just start searching edge
points for the next edge in the edge list. This approach will
be continued until there is not any edges left unprocessed.
Detailed algorithm of transforming skeleton map to graph is
in Algorithm 1, and the result of finding edge list is shown
in Figure 3f with different colors for different edges.

D. Skeleton Pruning using Fuzzy Logic

Having high sensitivity to border variations, almost all
algorithms for skeletonization need to be followed by a
pruning stage in order to remove thin branches caused by
boundary deformations. These branches may significantly
change the skeleton graph, and hence they should be treated
carefully for the matter of topology preserving in skele-
tonization algorithms. This issue would be intensified in
case of radar images and bow echo shapes, because they
have drastic variations on their borders, as it is evident in
radar images. There has been studies [14]–[16] investigating
direct as well as indirect methods to address this issue. Most
of these algorithms use Boolean logic in their decision to
remove or keep the branches. The output of these algorithms
is a crisp value attributed to each edge distinguishing branch
edges from main skeleton edges. However, if we ask a
person to do pruning on a skeleton graph, he or she would
extract the main skeleton with an uncertainty to some extent.
On the other hand, fuzzy logic introduces many-valued
logic in close proximity to human decision making system
[17], [18]. Hence, we propose an approach based on fuzzy
inference system to prune skeleton graph and extract the
main skeleton.

In our method, we use the outward flux values of the pix-
els as an input to the fuzzy inference system. Heuristically
from raw images of flux values (Figure 3c), the higher the
value of the outward flux in each pixel, the more probable
that the pixel is in the main skeleton. Therefore, based on

Algorithm 1 Skeleton2Graph
Input: Skeleton Map
Output: Branch Points, End Points, Edges List

1: procedure FIND VERTICES
2: for all Points on Skeleton do
3: PointMatrix ← find 8-Connected Neighbors
4: Filter PointMatrix by a 4-connected Neighbors

mask
5: EulerCharacteristic ← #Vertices − #Edges
6: if EulerCharacteristic > 2 then
7: BranchPoints ← Point
8: else if EulerCharacteristic = 1 then
9: EndPoints ← Point

10: end if
11: end for
12: end procedure
13: procedure CREATE EDGE LIST
14: EdgeList{1} ← Select one End Point randomly
15: EdgeNumber ← 1
16: while EdgeNumber ≤ # Edges in EdgeList do
17: SearchPoint ← EdgeList{EdgeNumber}(end)
18: SearchMatrix ← 8-Neighbors Connected

to SearchPoint
19: for all points in SearchMatrix do
20: Set Value to −EdgeNumber
21: if A point is in BranchPoints then
22: Add a new edge to EdgeList with having

this Branch point as its first Point
23: EdgeNumber ← EdgeNumber + 1
24: else if A Point in EndPoints then
25: EdgeNumber ← EdgeNumber + 1
26: else
27: Add Points to EdgeList{EdgeNumber}
28: end if
29: end for
30: end while
31: end procedure

this observation we can extract a feature for every edge
connected to a vertex in the skeleton graph. In order to
record vertices properties in the flux images, we form an
array, called Γ, for each vertex with the length of the number
of the edges linked to it. The value attributed to each edge
ej connected to the vertex Vi could be computed as follow:

Γ{Vi, ej} =
1

Mj − 1

Mj∑
Pj=2

(WG(Pj) · Flux(Pj)) , (3)

in which, j = 1, ..., Ni indicating the jth edge connected to
Vi. Ni is the number of edges linked to Vi, Mj is the number
of pixels in the jth edge, and WG(Pj) is the Gaussian weight

for each pixel of edge ej computed as follow:

WG(Pj) = exp

(
−||Pj − Vi||2

2σ2

)
. (4)

Our proposed fuzzy inference system (FIS) consists of
two components:
• FIS-1: Fuzzy inference system to compute degree of

belief of each pixel to main skeleton edges.
• FIS-2:Fuzzy inference system to compute degree of

belief of each pixel to branch edges.
The FIS-1 output, indicates that to what extent we believe

an edge belongs to main skeleton. Afterwards, we use this
value as an input to FIS-2 to compute the extent to which that
we believe an edge belongs to branch edges. These values
are the same for the pixels of the edge and varies among
different edges. In following subsections we introduce these
two fuzzy inference systems, their inputs, rules, and outputs.
And then we go through the details of our algorithm for
pruning skeleton.

Main Skeleton Fuzzy Inference System
We now describe the inputs, outputs, and the operators

used in the first fuzzy inference system (FIS-1).

Fuzzy Inputs: FIS-1 has two inputs as follows:
Importance Value (I) : which indicates the importance of

each edges, and is generated from vertices properties linked
edges. The details of computing importance value would
be described later. Based on variations in the importance
values of different vertices, we can calculate the expected
value and variance of this feature in an image. Thus, the
universe of the discourse for this input feature could be in
the range of [E{I} − 6× σI , E{I}+ 6× σI], where E{.}
is the expected value operation, and σI is its standard
deviation. In this universe of discourse we define three
different fuzzy sets including, Low, Medium, and High, each
of which have Gaussian membership functions with standard
deviation (sigma) equal to σI and different central values.

Edge Length (LE) : One of the most important features
for detecting main skeleton edges, is edge length. However,
branches mostly happen where boundary is deformed with
variations, and hence the skeleton would be furcated into
too many small branches. As a result, we can use the edge
length as an indicator for main skeleton pixels, alongside
with other factors. Edge length in each image is random
variable that we can find its expected value as E{LE},
and its standard deviation as σLE

. Hence, the universe of
the discourse for edge length input feature would lie in the
region of [E{LE} − 5× σLE

, E{LE}+ 5× σLE
]. Just in

this case, we should make sure that the minimum value for
edge length is not less than zero. For this input, we consider
three fuzzy sets with Gaussian membership functions, all
with the same sigma value, σLE

, and different centers. These
fuzzy sets are named Small, Medium, and Long.

Fuzzy Output: This FIS has one output, that is, Main Skele-
ton Degree of Belief (ΨMS). This output represents the
degree of belief on pixels to be on the main skeleton graph.
The range of its value is between [0, 1], and we define 5
different Gaussian membership functions as its fuzzy sets.
The sigma value for these fuzzy membership functions is
set to 0.05. These functions are as follow: Very Low, Low,
Average, High, and Very High. The output resulted from this
FIS for the skeleton in Figure 3d is shown in Figure 4a. The
higher the value in image, the higher degree of belief of main
skeleton (ΨMS) on that edge.

Fuzzy Operators: In each fuzzy inference system we should
define methods of integration of membership functions. First
of all we should decide about the method of integrating
different inputs in each rule, then the method for implication
of the output in each rule, and at the end the method of
aggregation of outputs from each rule. Hence, we choose
these operators as follow:
• Fuzzy Operation: we choose the simplest method, that

is, min for AND operations and max for OR operations.
• Implication Method: for the implication of the output

we choose min operator.
• Aggregation: for the aggregation of the outputs, we use

max operator.

Branch Fuzzy Inference System
The details of the second fuzzy inference system (FIS-2)

are provided below.

Fuzzy Inputs: FIS-2 has three inputs including the output of
FIS-1.

Main Skeleton Degree of Belief (ΨMS) : This is the
output from the first FIS. However, for this FIS, we only
consider two fuzzy membership functions, namely, Low and
High. Instead of Gaussian, we choose trapezoid membership
functions this time.

Edge Length (LE): Because of the importance of edge
length in distinguishing between main skeleton and branch
edges,we use this feature in our second FIS, with the same
range for its universe of discourse. But we merely define two
membership functions in FIS-2 for this input, consisting of
two trapezoid functions named Small and Long.

Curvature Score (SC) : In the course of searching for
the main skeleton, we may encounter with a vertex that has
two output edges, in which almost all of their properties are
similar. The only difference between these two edges is their
angle with the nearest main skeleton edge. The more this
angle is close to zero, the more probable that we categorize
the edge as a main skeleton edge rather than a branch edge.
Therefore, we introduce Curvature Score for vertex Vi as
follows:

SVi

C (~ei1 , ~ei2) = cos(θi1,i2) =
< ~ei1 , ~ei2 >

|| ~ei1 || || ~ei2 ||
, (5)

where ~ei1 is the vector starting from the middle point of

reference edge (or main skeleton edge) to Vi, and ~ei2 is the
vector starting from Vi to the middle point of the test edge.
The universe of discourse for this input would lie in the
range of [−1, 1], and we choose two trapezoid membership
functions on this range with the name of Averted and
Straight.

Fuzzy Output: The fuzzy output of this FIS is representing
the degree of belief on edges to be member of branch edges,
which is in the range of [0, 1], and we call it Branch Degree
of Belief (ΨB). We consider three membership functions
for this output, namely, Low, Average, High, in which the
first and the last one are trapezoid and the second one is
a triangle membership functions. The result of this FIS on
the skeleton of Figure 3d is depicted in Figure 4b. Higher
values in the image shows higher branch degree of belief
(ΨB).

Fuzzy Operators: We use the same fuzzy operators as the
first FIS for this FIS, that is, min for AND operation and
max for OR operations in the rules, min operator for output
implications, and max operator for aggregations.

Importance Value (I)
As it was mentioned in FIS-1, we have to compute value

I for each edge based on their flux values. Thus, we start
with the best edge in the sense of the highest flux value (the
average of Γ values of its both vertices), and then continue to
move from both ends toward other edges, until all the edges
are covered. Since we are computing the importance value of
each vertex in a predefined direction, it could be considered
as a “Tree” with vertices and edges in a hierarchical manner.
Hence, in the course of computing importance value of a
vertex we could include flux values of edges in the lower
level linked to that vertex in the hierarchy. Sometimes flux
values of edges on the main skeleton decrease (in proportion
to their linked edges), that pruning algorithm does a false
detection, if we merely rely on flux values of each edge.
Thus, this operation ensures to choose the main skeleton
edges by increasing their importance values. As a result, we
want to add depleted version of importance value of lower
level vertices to importance value of current vertex. Hence,
we can calculate the importance value for the vertex Vi in
the recursive scheme as follows:

I(Vi,Ω) =

(
γe−0.3

)∑Mi,Ω

ki=1 I(Vki
,Ω + 1), Ω < Ω?

(
γe−0.3

)∑Mi,Ω

ki=1

∑Ni,Ω

ji=1 Γ{Vki , eji}, Ω = Ω?

(6)
in which, Ω shows the depth level (with Ω = 1 the closest
level to vertex Vi), and Ω? is the maximum depth level
defined by user.

(
γe−0.3

)
is damping factor, Mi,Ω is the

number of vertices linked to Vi in the level Ω, and Ni,Ω is
the number of edges linked to Vi in the level Ω (when Ω ≥ 2,
the connection is indirect). In summary, for calculating the
importance value of a vertex we should consider vertices

properties (Γ) of all subsequent vertices below this vertex in
the tree.

Pruning Algorithm
Using fuzzy inference systems with proper importance

values of vertices and edges, the functionality of the pruning
algorithm would be straight forward. We just need to define
some parameters to give users ability to decide to what
extent they tolerate branches in an image and the maximum
threshold of ΨB on an edge, to consider it as a branch. We
define these parameters as follows:

BT ≡ Branch Tolerance ∈ [0, 1] ,

Ψ?
B ≡ ΨB Threshold ∈ [0, 1] ,

(7)

where BT = 0 means we do not tolerate any branches and
we just want the medial axis. For example, if BT = 0 and
Ψ?

B = 0.6, then we would like to get rid of all edges that
have ΨB greater than or equal with 0.6. If BT is set to 1, it
does not mean that we want to keep all edges with ΨB less
than Ψ?

B , but we want to constraint the decision based on the
situation of each branch point. Take for instance, a branch
point has 2 edges with both ΨB values less than Ψ?

B and
BT = 1, but there is a huge difference between their values,
which makes us to choose the one with the lesser value.
Hence, based on these two parameters and ΨB values in each
branch point separately, we should form a Belief Window
(BW) to filter desired values on that particular branch point.
This window should always start from the minimum value
among ΨB values of edges linked to a branch point, and
can have a size in the form of equation below for the vertex
Vi and set of edges linked to it in the lower level Ei:

BW (Vi, Ei) =

B
∆(Vi,Ei)
T ×∆(Vi, Ei)

f1(BT) × ef2(∆(Vi,Ei)) , (8)

where

∆(Vi, Ei) , Ψ?
B −min

Ei

ΨB ,

f1(BT) , α+ βBT ,

f2(∆(Vi, Ei)) , κ+ λ∆(Vi, Ei) .

(9)

This function would satisfy aforementioned property of
belief window for choosing branches. Parameters of lines in
f1 and f2 can be set heuristically. For example, we can set
them as follow: α = 1.5, β = 0.2, κ = 1.5, and λ = −2.5.
When this window is formed, in each branch point we can
decide which edges to keep or omit. The pruned skeleton of
Figure 3d is in the Figure 4c.

E. Skeleton Context

Shape Context [19] as a powerful shape descriptor rep-
resents a rough distribution of all other points with respect
to a selected point in terms of distance and angle. Shape
context is used to find correspondences between samples
from border of two shapes, and then find the cost of

(a) (b) (c)

Figure 4: Output of pruning algorithm: (a) main skeleton
degree of belief, (b) branch degree of belief, (c) Pruned
skeleton. In (a) and (b) images are in grayscale, and higher
values represent higher degree of beliefs

matching two shapes using bipartite graph matching. After
that, parameters for an affine transform are extracted using
thin plate spline (TPS), in order to map points in one shape
to their correspondences in the other shape with warping
the coordinates. Finally, a notion of shape distance for
recognition purposes is exploited.

As there are a lot of fluctuations over the boundaries of
the shapes in radar images, these make object matching
with boundary samples less effective, and it may result
in false matching. On the other hand, matching objects
using skeleton samples sounds more robust in the sense that
pruned skeleton contains complete shape topology regardless
of its boundary variations. Hence, we use shape context
to introduce a new descriptor called skeleton context. As
it is shown in an example in Figure 5, skeleton context
is log-polar histogram, formed for each sample point on
the skeleton. For each sample point Pi, the center of this
log-polar histogram is located on that sample point, then
each bin in the histogram represents the number of sample
points in the specific angle and range of distance from
the center (i.e. Pi) determined by that bin. We use the
notation of HSC(Pi, rk1

, θk2
), to show the value of skeleton

context’s histogram for point Pi, in the (rk1
, θk2

) bin. These
histograms contain information of each sample point in
proportion to other sample points on the skeleton of an
object, and hence it could play object descriptor role for
shape matching. As a result we could use these descriptors
as feature data for bow echo detection in the next step. In
Figure 5 you can find the skeleton context computed for
two points of two objects, which matched together in our
algorithm.

III. BOW ECHO CLASSIFICATION AND DETECTION

With skeleton context defined in previous section, we
are able to extract features from objects in radar images
and use them in the recognition process. In the following
subsections, we introduce our proposed model for learning

(a) (b)

Figure 5: Skeleton Context of 2 points on different skeletons
that are matched based on the algorithm.

features of bow echoes and implementing a classifier in order
to detect bow echoes in tons of objects extracted from radar
images.

A. Shape Matching with Skeleton Context

The procedure for shape matching is nearly the same
with the method introduced in [19], that is, instead of shape
context, we use our proposed descriptor skeleton context.
Defined in [19], we can compute the cost of mapping each
skeleton point P 1

i in image 1, to each skeleton point P 2
j in

image 2 as follows:

C(P 1
i , P

2
j) = (10)

1

2

∑
k1,k2

(
HSC(P 1

i , rk1
, θk2

)−HSC(P 2
j , rk1

, θk2
)
)2

HSC(P 1
i , rk1 , θk2) +HSC(P 2

j , rk1 , θk2)
.

Having the cost of all possible mapping, we can use one
of the algorithms designed to solve the bipartite graph
matching, such as Hungarian method [20], which finds the
minimum cost solution for matching points in image 1 to
image 2. We define a threshold for the cost of matching,
which indicates that if the minimum cost of matching one
point from image 1 to the points of image 2 is greater than
that threshold, then we announce that there is no matching
point for this sample point in image 1. This could be applied,
by adding some dummy points with matching cost of defined
threshold, which allows some points (at most equal to the
number of dummy points added) to have no matches in
the other shape. This is necessary for having partial shape
matching, which would be described in the next section.
After that, our affine transformation can map in the last step
by warping coordinates. As mentioned, for this step we could
use TPS interpolation which tries to minimize the bending
energy as it is defined in [19]. Warping coordinates, we need
an indicator that shows the intensity of changes on shapes in
the transformation . For instance, if the transformation is just
a simple rotation or relocation, this indicator should be low,
which means the transformation has not warped coordinates
extensively. But it would be high, if the transformation is

warping coordinate significantly to map the points together.
If the affine transformation could be written in mathematical
form as:

~y = f(~x) = A~x+~b , (11)

with matrix A as linear map and vector ~b as the offset
for translation, then we can write our indicator for affine
transformation as follows:

CA = log
σ1(A)

σ2(A)
, (12)

where σi(A) shows i-th singular value of matrix A, with
σ1 ≥ σ2. The more CA is closer to zero, the more the
skeleton of two shapes are similar, and the less coordinates
are warped. In total, we can use four different indicators
for the quality of matching of two shapes using skeleton
context.
• Matching Cost (CMC) : This is defined based on the

cost of matching points in two shapes, as it was
computed in equation 10.

• Bending Energy (CBE) : The energy that TPS wants
to minimize, which is described in [19].

• Affine Indicator (CA) : which is defined in equation 12.
• Matching Ratio (CMR) : It represents the ratio of the

number of sample points in image 1, that we could
match with points in image 2; to the total number of
sample points.

B. Neighboring Effect

As it was discussed, we need partial shape matching, as
bow echoes have a tail in addition to the bow part in some
cases, and this tail might be different among various bow
echoes. Therefore, we should add an alteration to the shape
matching part, in order to include partial shape matching
in our algorithm. To do so, after the first iteration of shape
matching, we can learn the initial mapping between sample
points of two images. Since in our algorithm for extracting
edge list, points are listed in accordance with their spatial
order, we can use this ordinal positions of sample points to
define neighbors. For instance, if (m−1)-th and (m+ 1)-th
sample points in image 1 are mapped respectively to (n−1)-
th and (n+ 1)-th sample points in image 2 , then we expect
m-th sample point in image 1 to be mapped as close as
possible to n-th sample point in image 2. This is what we call
neighboring effect, and we want to impose this constraint in
the shape matching algorithm by adding a Neighbor Cost
to the cost introduced in equation 10. This Neighbor Cost
could be in the form of:

CN (m) = εN

[
1− exp

(
− (m− E{δN})2

2σ2

)]
, (13)

where εN is the maximum amplitude of this cost, and
random variable δN is the difference between sample points’
numbers in image 1 with respect to the their mapped sample
points’ in image 2. This Gaussian shape function would try

to keep mapping of each sample point in accordance to its
neighbors.

C. Classifier

After defining features for detecting a bow echo in sec-
tion III-A, we should learn a classifier for the classification
part.First we should select some prototypes from our bow
echo samples, and then we can use them in the next stages
of classification as representatives of bow echo class. Having
abundant types of bow echoes in radar images, we can
use K-medoids algorithm [21], in order to find prototypes
in bow echo class. Thereafter, these prototypes are used
as a reference for the bow echo class. Hence, to decide
whether a skeleton image belongs to bow echo class or
non-bow echo class, we just need to find the minimum
distance between skeleton image and bow echo prototypes.
The distance of two skeleton is defined as a linear combi-
nation of four different costs as they were characterized in
section III-A. As a classifier we use Mixture Discriminant
Analysis (MDA) [22], which is generalized version of Linear
Discriminant Analysis (LDA). In MDA, we consider each
class has Rm prototypes with Gaussian distributions, and
next, using Expectation Maximization (EM) algorithm [23]
to find the Gaussian-distributed parameters and probability
of each sample in each Gaussian-distributed sub-class. Thus,
the EM algorithm alternates between these two steps [22]:
• Expectation Step (E-step): Given the parameters for the

distributions of Rm sub-classes in class m, we should
assign a weight for each sample in each sub-class, with
total sum of probabilities equal to one.

• Maximization Step (M-step): Using weights computed
in the E-step, in order to compute weighted Maximum
Likelihood estimation for parameters of each sub-class
distribution.

After training and finding the parameters for sub-class
distributions in both bow echo and non-bow echo classes,
our classifier assess the weight of new coming samples for
each subclass in two classes. This would determine the class
of that sample based on the label of the nearest subclass to
the sample.

IV. CASE STUDY

Using skeletonization approach and shape matching al-
gorithm with skeleton context introduced in section II and
section III respectively, alongside with the classifier defined
above, we are able to detect bow echoes in radar images au-
tomatically with high rate of accuracy. To test this approach
and classifier, we build a database for a case study.

A. Training Data

Our database consists of US radar images in 2008. We
have chosen that year because it had a large number of severe
weather activities. The techniques developed, however, are
general and applicable to any year. We search the whole year

(a) 2008/08/18 (b) 2008/06/26 (c) 2008/05/02 (d) 2008/08/04 (e) 2008/05/24 (f) 2008/01/11 (g) 2008/02/06 (h) 2008/05/23

(i) 2008/08/18 (j) 2008/06/26 (k) 2008/05/02 (l) 2008/08/04 (m) 2008/05/24 (n) 2008/01/11 (o) 2008/02/06 (p) 2008/05/23

Figure 6: Bow echo prototypes with k = 8. The top row is radar images, and below their respective skeleton extracted.

images to find those dates that bow echo happened in United
States, and succeed to label 89 distinct days with bow echo
during 2008 including 1, 148 radar images. After that, we
extract skeleton of regions of interest in each radar images
and label them as bow echo and non-bow echo classes. In
each image that we can spot a bow echo, there would be
some other parts that are not bow echo but would be captured
as regions of interest, for their reflective signal amplitudes
are similar to bow echo. From these images, we label 1, 148
bow echo samples and 443 non-bow echo samples.

B. Prototype Extraction

As it was explained in section III-C, we need to implement
k-medoids algorithm [24] to find k different bow echoes as
prototypes of bow echo class. Consequently, we first find the
distance between all bow echoes by running shape matching
algorithm pairwise on all bow echo class samples. After
finding distance matrix between all pairs of bow echoes,
by running k-medoids algorithm, k bow echo prototypes are
extracted, as it is depicted in Figure 6, for k = 8.

C. Classification

The last step would be the training of the MDA classifier
and classification process. For this step, we use cross-out val-
idation to get more accurate results on our database. 20-fold
cross-out validation would chunk data to 20 parts, each of
which containing both bow echo and non-bow echo samples.
In each iteration, one chunk of data would be considered as
test data, and the other 19 chunks of data would be used as
training data. The results of using MDA algorithm with 8,
9, and 10 prototypes (k = 9, 8, 10) is shown in Figure 7b,
which reveals that the best option for number of distributions
is Rm = 2. The effect of the number of bow echo prototypes
is computed in Figure 7a. Results, indicate that overall it has
increasing order with adding more prototypes, but it became
approximately constant after 5 prototypes. Since for finding
bow echo prototypes, the k-medoids algorithm should run
separately each time, these prototypes could be completely
different. For instance, for k = 3 and k = 4, the k-medoids

1 2 3 4 5 6 7 8 9 10

Number of Bow Echo Prototypes (k)

70

75

80

85

90

95

100

A
c
c
u

ra
c
y
 R

a
te

 %

Accuracy Rate

Moving Average on Accuracy Rate

(a)

1 2 3 4 5

Number of mixture distributions in each class (R
m

)

94.5

95

95.5

96

96.5

97

97.5

A
c

c
u

ra
c

y
 R

a
te

 %

k = 8

k = 9

k = 10

(b)

Figure 7: Accuracy Rate versus (a) number of bow echo
prototypes, and (b) number of mixture distributions in each
class.

algorithm can choose totally distinct prototypes. Thus, as
our proposed algorithm depends on topological features of
these distinct prototypes, the results of classification can
vary based on these features. To compensate this effect, we
apply moving average on the results, which makes it more
reliable and robust against randomness inherent in choosing

prototypes. We can go beyond ten prototypes to get better
results, but the disadvantages of increasing computational
time by adding more prototypes is higher than the benefits
of small portion of improvement in accuracy rate.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel computational ap-
proach for detecting bow echo patterns in radar images.
Meteorologists can use our method to record bow echoes
automatically and with high accuracy. In addition to detec-
tion, the next step in this research would be forecasting of
bow echoes and severe weather conditions associated with
them. This could be possible in this framework as well. With
the help of affine indicator introduced in Section III-A, we
can track changes in a line over some periods of time to
see whether it is going to deform to a bow echo shape or
not. Hence, this framework could be exploited for further
developing of forecasting techniques.

Beyond the meteorological point of view, this research
suggests more opportunities for future research direction.
Shape matching is one of the most challenging areas in
computer vision from early stages of formation of the field.
This research suggests a new and robust descriptors for
shapes to be used in shape matching context. On the other
side, the innovative approach for skeletonization and skele-
ton pruning using fuzzy logic can be used in other schemes
in image processing and computer vision for extracting well-
structured skeletons in close proximity to human vision.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1027854. The
authors would like to thank Jia Li of Penn State University
and Michael A. Steinberg of Accuweather Inc. for helpful
discussions, the National Oceanic and Atmospheric Admin-
istration (NOAA) for providing the data, and Yu Zhang and
Yukun Chen for assisting with data collection.

REFERENCES

[1] B. A. Klimowski, M. R. Hjelmfelt, and M. J. Bunkers, “Radar
observations of the early evolution of bow echoes,” Weather
and forecasting, vol. 19, no. 4, pp. 727–734, 2004.

[2] B. A. Klimowski, M. J. Bunkers, M. R. Hjelmfelt, and J. N.
Covert, “Severe convective windstorms over the northern high
plains of the united states,” Weather and forecasting, vol. 18,
no. 3, pp. 502–519, 2003.

[3] C. Davis, N. Atkins, D. Bartels, L. Bosart et al., “The
bow echo and mcv experiment,” Bulletin of the American
Meteorological Society, vol. 85, no. 8, p. 1075, 2004.

[4] R. W. Przybylinski, “The bow echo: Observations, numerical
simulations, and severe weather detection methods,” Weather
and forecasting, vol. 10, no. 2, pp. 203–218, 1995.

[5] T. T. Fujita, Manual of downburst identification for project
NIMROD. Satellite and Mesometeorology Research Project,
Department of the Geophysical Sciences, University of
Chicago, 1978.

[6] Iowa Environmental Mesonet, “Documentation on IEM
generated nexrad composites,” 2001. [Online]. Available:
http://mesonet.agron.iastate.edu/docs/nexrad composites/

[7] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton
based shape matching and retrieval,” in Shape Modeling
International, May 2003, pp. 130–139.

[8] R. Ogniewicz and M. Ilg, “Voronoi skeletons: Theory and
applications,” in IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. IEEE, 1992, pp. 63–
69.

[9] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W.
Zucker, “Shock graphs and shape matching,” International
Journal of Computer Vision, vol. 35, pp. 13–32, 1999.

[10] B. Kégl and A. Krzyzak, “Piecewise linear skeletonization us-
ing principal curves,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 1, pp. 59–74, 2002.

[11] P. Dimitrov, C. Phillips, and K. Siddiqi, “Robust and efficient
skeletal graphs,” in IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1. IEEE, 2000, pp. 417–423.

[12] F. Reinders, M. E. Jacobson, and F. H. Post, “Skeleton
graph generation for feature shape description,” in Data
Visualization. Springer, 2000, pp. 73–82.

[13] H. Blum, “Biological shape and visual science (part i),”
Journal of Theoretical Biology, vol. 38, no. 2, pp. 208–287,
1973.

[14] X. Bai, L. J. Latecki, and W.-Y. Liu, “Skeleton pruning
by contour partitioning with discrete curve evolution,” IEEE
transactions on pattern analysis and machine intelligence,
vol. 29, no. 3, pp. 449–462, 2007.

[15] H. Liu, Z.-H. Wu, X. Zhang, and D. F. Hsu, “A skeleton
pruning algorithm based on information fusion,” Pattern
Recognition Letters, vol. 34, no. 10, pp. 1138–1145, 2013.

[16] W. Shen, X. Bai, X. Yang, and L. J. Latecki, “Skeleton
pruning as trade-off between skeleton simplicity and recon-
struction error,” Science China Information Sciences, vol. 56,
no. 4, pp. 1–14, 2013.

[17] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8,
no. 3, pp. 338–353, 1965.

[18] J. Kacprzyk, Studies in Fuzziness and Soft Computing.
Springer, 2000.

[19] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE transactions
on pattern analysis and machine intelligence, vol. 24, no. 4,
pp. 509–522, 2002.

[20] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimiza-
tion: algorithms and complexity. Courier Corporation, 1982.

[21] L. Kaufman and P. Rousseeuw, Clustering by means of
medoids. North-Holland, 1987.

[22] J. Friedman, T. Hastie, and R. Tibshirani, The elements of
statistical learning. Springer series in statistics Springer,
Berlin, 2001, vol. 1.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Jour-
nal of the royal statistical society. Series B (methodological),
pp. 1–38, 1977.

[24] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an
introduction to cluster analysis. John Wiley & Sons, 2009,
vol. 344.

http://mesonet.agron.iastate.edu/docs/nexrad_composites/

	Introduction
	Bow Echo Feature Extraction
	Overview
	Radar Images and Regions of Interest
	Skeletonization
	Skeleton Pruning using Fuzzy Logic
	Skeleton Context

	Bow Echo Classification and Detection
	Shape Matching with Skeleton Context
	Neighboring Effect
	Classifier

	Case Study
	Training Data
	Prototype Extraction
	Classification

	Conclusions and Future Work
	References

